Lecture 5

Diffusion Models

6.S978 Deep Generative Models

Kaiming He Fall 2024, EECS, MIT

Overview

• Diffusion Models

• Energy-based Models and Score Matching

Deep unsupervised learning using nonequilibrium thermodynamics

- Authors Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, Surya Ganguli
- Publication date 2015/3/12
 - Journal International Conference on Machine Learning

Total citations Cited by 5630

Diffusion Models

Diffusion Models

Forward process

• add noise to data

Reverse process

• learn to denoise

Training objective

• from Hierarchical VAE to L2 loss

Noise Conditional Network

• represent distributions

Forward process: add noise

Reverse process: denoise

 $p(x) = \delta(x - x_0)$

Diffusion Models

Forward process

• add noise to data

Reverse process

• learn to denoise

Training objective

• from Hierarchical VAE to L2 loss

Noise Conditional Network

• represent distributions

Forward Process

 $x_t = \sqrt{1 - \beta_t} x_{t-1} + \sqrt{\beta_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I})$

coefficients: variance preserving

t: "schedule", key to Diffusion Models' success

Forward Process

Forward Process

identity matrix

- sampling is i.i.d.
- dim = dim of data

tl; dr:

- pre-defined conditional distributions
- Gaussian w/ controllable mean/std
- <u>divide</u> and conquer

Diffusion Models

Forward process

• add noise to data

Reverse process

• learn to denoise

Training objective

• from Hierarchical VAE to L2 loss

Noise Conditional Network

• represent distributions

- our target
- but unknown

Why are the reverse conditionals unknown?

Figure adapted from: Joseph Rocca "Understanding Variational Autoencoders (VAEs)" https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Why are the reverse conditionals unknown?

Figure adapted from: Joseph Rocca "Understanding Variational Autoencoders (VAEs)" https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

• Gaussian

Reverse Process

Reverse Process

Reverse Process

Reverse Process

Reverse Process

- tl; dr: a known Gaussian
- we want to learn it by p_{θ}
- we can represent p_{θ} by a Gaussian
- minimize KL divergence

tl; dr

- some dependency graphs
- some linear combinations
- *D*_{KL}
- L2 loss of noise

Diffusion Models

Forward process

• add noise to data

Reverse process

• learn to denoise

Training objective

• from Hierarchical VAE to L2 loss

Noise Conditional Network

• represent a distribution

- variational lower bound
- like ELBO

$$\begin{split} \mathcal{L}_{\text{VLB}} &:= \mathcal{L}_{T} + \mathcal{L}_{T-1} + ... + \mathcal{L}_{0} \\ \mathcal{L}_{T} &:= D_{\text{KL}} \Big(q(x_{T} \mid x_{0}) \mid \mid p_{\theta}(x_{T}) \Big) \\ \mathcal{L}_{t-1} &:= D_{\text{KL}} \Big(q(x_{t-1} \mid x_{t}, x_{0}) \mid \mid p_{\theta}(x_{t-1} \mid x_{t}) \Big) \\ \mathcal{L}_{0} &:= -\log p_{\theta}(x_{0} \mid x_{1}) \end{split}$$

- variational lower bound
- like ELBO

$$\begin{split} \mathcal{L}_{\text{VLB}} &:= \mathcal{L}_T + \mathcal{L}_{T-1} + \ldots + \mathcal{L}_0 \\ \mathcal{L}_T &:= D_{\text{KL}} \left(q(\overset{\mathbb{Z}}{\texttt{x_T}} \mid x_0) \mid \mid p_{\theta}(\overset{\mathbb{Z}}{\texttt{x_T}}) \right) \\ & \text{it's ELBO if one step} \\ \hline \mathcal{L}_{t-1} &:= D_{\text{KL}} \left(q(x_{t-1} \mid x_t, x_0) \mid \mid p_{\theta}(x_{t-1} \mid x_t) \right) \\ \mathcal{L}_0 &:= -\log p_{\theta}(x_0 \mid \overset{\mathbb{Z}}{\texttt{x_1}}) \end{split}$$

$$\begin{aligned} \mathcal{L}_{\text{VLB}} &:= \mathcal{L}_T + \mathcal{L}_{T-1} + \ldots + \mathcal{L}_0 \\ & \text{no parameter, unlike VAE's } q_\phi \\ \hline \mathcal{L}_T &:= D_{\text{KL}} \left(\underbrace{q(x_T \mid x_0)}_{\text{Gaussian}} \mid \underbrace{p_{\text{R}}(x_T)}_{\text{Gaussian}} \right) \\ \mathcal{L}_{t-1} &:= D_{\text{KL}} \left(q(x_{t-1} \mid x_t, x_0) \mid \mid p_{\theta}(x_{t-1} \mid x_t) \right) \\ \mathcal{L}_0 &:= -\log p_{\theta}(x_0 \mid x_1) \end{aligned}$$

$$\mathcal{L}_{\text{VLB}} := \mathcal{L}_T + \mathcal{L}_{T-1} + \dots + \mathcal{L}_0$$

$$\mathcal{L}_T := D_{\text{KL}} \Big(q(x_T \mid x_0) \mid\mid p_\theta(x_T) \Big)$$
L2 loss on noise
$$\mathcal{L}_{t-1} := D_{\text{KL}} \Big(q(x_{t-1} \mid x_t, x_0) \mid\mid p_\theta(x_{t-1} \mid x_t) \Big)$$

$$\mathcal{L}_0 := -\log p_\theta(x_0 \mid x_1)$$

$$\mathcal{L} = \mathbb{E}_{x_0, t, \epsilon} \left[w_t \| \epsilon - \epsilon_{\theta}(x_t, t) \|^2 \right]$$

$$\mathcal{L} = \mathbb{E}_{x_0, t, \epsilon} \left[\underbrace{w_t}_{t} \right] \epsilon - \epsilon_{\theta} (x_t, t) \|^2 \right]$$

set as 1 (critical)

Objective	IS	FID
L, learned diagonal Σ L, fixed isotropic Σ $\ \tilde{\boldsymbol{\epsilon}} - \boldsymbol{\epsilon}_{\theta}\ ^2 (L_{\text{simple}})$	-7.67 ± 0.13 9.46±0.11	- 13.51 ← 3.17 ←

[Ho et al. 2020]; see more in [Salimans & Ho, 2022]

$$\mathcal{L} = \mathbb{E}_{x_0,t,\epsilon} \begin{bmatrix} w_t \| \epsilon - \epsilon_{\theta}(x_t, t) \|^2 \end{bmatrix}$$
network to
predict noise
conditioned on
noise level (critical)

Diffusion Models

Forward process

• add noise to data

Reverse process

• learn to denoise

Training objective

• from Hierarchical VAE to L2 loss

Noise Conditional Network

• represent a distribution

Noise Conditional Network

- Diffusion models decompose a distribution into **many** simpler ones.
- We need the same # networks to fit **all** of them.
- We can **combine** all into one "powerful" network.
- This network is conditioned on noise level t.

• Noise Conditional Network [Song & Ermon 2019]: things made work

*It is called Noise Conditional Score Network (NCSN) in [Song & Ermon 2019] in the context of score matching.

Noise Conditional Network

How to represent $p_{\theta}(x_{t-1} \mid x_t)$

- network input: x_t
- network output: μ and σ of a distribution
- parametrize μ by: $\epsilon_{ heta}(x_t,t)$

noisy image:

- condition
- network input

noise level:

- condition
- network input

Noise Conditional Network

Diffusion algorithm annotated:

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ estimated μ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \underbrace{\frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}}_{5:$ end for 6: return \mathbf{x}_0
	sampling from

estimated distribution

Diffusion algorithm annotated:

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

tl; dr: noising and denoising

- Turns out to be extremely simple
- Being "simple and effective" moves the needle

Example: Unconditional Generation on CIFAR-10

noise

 x_T

Example: shared intermediate latents

Share x₁₀₀₀

Share x₇₅₀

Share x₅₀₀

Share x₂₅₀

Summary

Forward process

• add noise to data

Reverse process

• learn to denoise

Training objective

• from Hierarchical VAE to L2 loss

Noise Conditional Network

• represent distributions

Energy-based Models and Score Matching

Diffusion and Score Matching

- Diffusion Models are closely related to Score Matching.
- Score Matching is one solution to **Energy-based Models**.
- Energy-based Models:
 - can be probabilistic or non-probabilistic
 - can be generative or discriminative
- Many useful concepts in diffusion co-evolved w/ score matching
 - Annealed importance sampling [Neal 1998]
 - Denoising score matching [Vincent 2011]
 - Noise Conditional Score Network [Song & Ermon 2019]

- Define a <u>scalar</u> function, called "energy".
- At <u>inference</u> time, find x that minimizes energy

• We can use an energy to model a probability distribution

• "Score function": gradient of log-probability

E(x)

• "Score function": gradient of log-probability

$$\nabla_x \log p(x) = -\nabla_x E(x)$$

"non-normalized probabilistic models"

p(x)
Energy-based Models

• "Score function": gradient of log-probability

$$\nabla_x \log p(x) = -\nabla_x E(x)$$

Score Matching

• Instead of parametrizing p, we can parametrize the score

Score Matching

• Instead of parametrizing p, we can parametrize the score

Denoising Score Matching

distribution

of noised data

- with noised data $ilde{x}:=x+\epsilon$, it can be proven: [Vincent, 2011]

$$\underbrace{D_F(q(\tilde{x}) \parallel p_\theta(\tilde{x}))}_{\text{Fisher divergence}} = \mathbb{E}_{\underbrace{q(x,\tilde{x})}} \begin{bmatrix} \frac{1}{2} \parallel \nabla_{\tilde{x}} \log q(\tilde{x} \mid x) - \nabla_{\tilde{x}} \log p_\theta(\tilde{x}) \parallel^2 \end{bmatrix} + \text{constant}$$
Fisher divergence joint score of conditional parameterized score

See: Vincent, "A Connection Between Score Matching and Denoising Autoencoders", Neural Computation, 2011

Denoising Score Matching

- with noised data $ilde{x} := x + \epsilon$, it can be proven: [Vincent, 2011]

$$D_{F}(q(\tilde{x}) \parallel p_{\theta}(\tilde{x})) = \mathbb{E}_{q(x,\tilde{x})} \begin{bmatrix} \frac{1}{2} \parallel \nabla_{\tilde{x}} \log q(\tilde{x} \mid x) - \nabla_{\tilde{x}} \log p_{\theta}(\tilde{x}) \parallel^{2} \end{bmatrix} + \text{constant}$$

Gaussian
noise:
$$= \frac{1}{\sigma^{2}} (x - \tilde{x})$$

$$= -\epsilon$$

See: Vincent, "A Connection Between Score Matching and Denoising Autoencoders", Neural Computation, 2011

Langevin Dynamics

• Given a score function, we can sample x from p by iterating:

$$x_{t} \leftarrow x_{t-1} + \underbrace{\sigma^{2}}_{2} \underbrace{\nabla_{x} \log p_{\theta}(x_{t-1})}_{\text{step size}} + \sigma z_{t} \\ \text{step size} \\ \text{score function} \\ \text{(don't need to know } p) \\ \text{(don't need to know } p) \\ \text{(neg) gradient of energy} \\ -\nabla_{x} E_{\theta}(x_{t-1}) \end{aligned}$$

Langevin Dynamics

• Given a score function, we can sample x from p by iterating:

(Recap) Diffusion algorithm

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \underline{\boldsymbol{\epsilon}}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \underline{\epsilon_{\theta}(\mathbf{x}_t, t)} \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0 score function
score function	Langevin Dynamics

More about Energy-based Models ...

• At <u>inference</u> time, find a solution that minimizes energy

LeCun et al., "A Tutorial on Energy-Based Learning", 2006

Various Perspectives on Diffusion Models ...

- Hierarchical VAE
- Energy-based Models and Score Matching
- Autoregressive models

be a fully expressive conditional distribution. With these choices, $D_{\text{KL}}(q(\mathbf{x}_T) || p(\mathbf{x}_T)) = 0$, and minimizing $D_{\text{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t) || p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t))$ trains p_{θ} to copy coordinates $t + 1, \ldots, T$ unchanged and to predict the t^{th} coordinate given $t + 1, \ldots, T$. Thus, training p_{θ} with this particular diffusion is training an autoregressive model.

[Ho et al, 2020]

- SDE and ODE
- Normalizing Flows
- Recurrent Neural Networks

This Lecture

• Diffusion Models

• Energy-based Models and Score Matching

Main References

- Sohl-Dickstein et al. "Deep Unsupervised Learning using Nonequilibrium Thermodynamics", ICML 2015
- Ho et al. "Denoising Diffusion Probabilistic Models", NeurIPS 2019
- Hyvärinen. "Estimation of non-normalized statistical models by score matching", JMLR 2005.
- Song & Ermon. "Generative Modeling by Estimating Gradients of the Data Distribution", NeurIPS 2019
- Song & Kingma. "How to Train Your Energy-Based Models", arXiv 2021