Lecture 4

Generative Adversarial Networks

6.5978 Deep Generative Models

Kaiming He
Fall 2024, EECS, MIT

Overview

* Generative Adversarial Networks (GAN)
* Wasserstein GAN (W-GAN)

* Adversary as a Loss Function

Generative Adversarial Networks
(GAN)

Introduction

e “Generative”
e “Discriminative” was dominant back then

* “Adversarial”
e Generative models w/ discriminative models
* Min-max process

* “Networks”
* SGD + backprop for problem solving

Recap: Latent Variable Models

Represent a distribution by a neural network:

e ~ -latent variables
A generator h

P.(2) Py(x)

e 1 -observed variables

Recap: Variational Autoencoder (VAE)

Autoencoding distributions:
“Encoding” data distribution p,,,, into latent distribution p,

A encoder A generator /“

pda,ta(aj) pz(z) pg(x)

What’s the implication of a “reconstruction” loss?

* Elements (e.g., pixels) are independently distributed
* Each element follows a simple distribution (Gaussian/Bernoulli/...)

Assumptions are too strict for high-dim variables

Can we measure the distribution difference in another way?

Generative Adversarial Networks

Representing distribution difference by a neural network

A generator /“
\

p.(2) Py()

\e > network = LA,)

7

pdata(:E)

Generative Adversarial Networks

Representing distribution difference by a neural network

A generator A
\

p.(2)

~ discriminator — Ah o 2 ?

Generative Adversarial Networks

Representing distribution difference by a neural network

“fake” data

<

f generator

p.(2) Py()

AE discriminator — “fake”

Generative Adversarial Networks

Representing distribution difference by a neural network

ﬁ discriminator — ‘“regl”
“real” data ;

pda,ta(aj)

VAE

2L

'\

Pdata
P
GAN
f »pg ™
| A generator
p. A -

P data

f qu
encoder \L decoder

> discriminator

'y,

M or 47

VAE

generation

GAN

generation

A~

D

generator

Adversarial Objective

@L‘(D, G) = Eqgropy[log D(z)] + E.np. log(1 — D(G(2)))]

min-max process
(vs. EM’s max-max process)

E.-3
A

P data

y N G

D

> D »Orﬁ?

Adversarial Objective: D-step

mm@c OG Ez~pulog D(z)] + E,~p, [log(l — D(G(2)))]

e
P

D-step: fix GG, optimize D

M\pg .
A G J
p. AA\ ~

P data

Adversarial Objective: D-step

max L(D) = Ezpy. logD(z))+ E,~p, [log(1 —D(G(2)))]

D
pushto 1

D-step: fix GG, optimize D
D toclassify real or fake

* binary logistic regression (sigmoid + cross-entropy)

%Ikpg\
A

P data

y N G

D

pushto O

M or 447

Adversarial Objective: D-step

D
pushto 1

D-step: fix GG, optimize D
D toclassify real or fake

* binary logistic regression (sigmoid + cross-entropy)

»pg ™
A’\)

P data

ma’XE(D) — IE-rl';'""pdata [10 D(x) _|_]E'x’\’pg [log(]‘ T @l)]

—

pushto O

M or 447

Adversarial Objective: G-step
min max £(D, G) = Egepy, [log D(2)] + E.p. [log(1 — D(G(2)))]

G D

GG-step: fix D, optimize G

M\pg .
A G J
p. AA\ ~

P data

Adversarial Objective: G-step

min maxeL (D] G) = Egzp Jog D@+ By, [log(1 — D(G(2)))]

G b

GG-step: fix D, optimize G

M\pg .
A G J
p. AA\ ~

P data

M or 447

Adversarial Objective: G-step

min £(G) = E,,, [log(1 (D(G(2)))]

G
pushto 1
GG-step: fix D, optimize G
e generate fake data such that D classifies it as “real”
* (to “confuse” D
A G D M or 47

D

Adversarial Objective: G-step

Imax

a “flip” trick: ?E(G) =E,p, log(FE(D(G(2)))]
pushto 1
GG-step: fix D, optimize G
e generate fake data such that D classifies it as “real”
* (to “confuse” D
A G D M or .S ?

D

Adversarial Objective: G-step

a “flip” trick:

Early in training: [

(5 is poor
D(G) isnear0

Imax

i £(G) = .y, [log(

[\

D(G(z2)))]

pushto 1

weak gra

log(D(G(x)))

/ — log(1-D(G(x)))

0.2

0.4 0.6

D(G(x))

0.8

1.0

Algorithm 1 Minibatch stochastic gradie aining of generative adversarial nets. The number of

steps to apply to the discriminator, k, is a hyperpargmeter. Wg us ——|, the least expensive option, in our
experimens, minibatch

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(l), s g z(m)} from noise prior py(z).
e Sample minibatch of m examples {:c(l), . ,w(m)} from data generating distribution
pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo 3" [log D (59) +10g (1- D (6 (29)))].

end for

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior Bgllz):
e Update the generator by descending its stochastic gradient:

m

Vgg% ;10g (1 —D (G <z(i))>) .

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

»pg ™

D

GAN algorithm annotated

P data

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

¢*Fample minibatch of m noise samples {21, ..., z(™)} from noise prior p,(2).
e Sample minibatch of m examples {:c(l), . ,w(m)} from data generating distribution
pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo 3" [log D (+9) +10g (1- D (6 (29)))].

end for

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior Bgllz):
e Update the generator by descending its stochastic gradient:

m

Vgg% ;10g (1 —D (G <z(i))>) .

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

»pg ™

D

\

GAN algorithm annotated

P data

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do
e Sample minibatch of m noise samples {z(l), s g z(m)} from noise prior py(z).
#® Sample minibatch of m examples {x®M), ..., w(m)} from data generating distribution

PdaglL
o’%’__ateme discriminator by ascending its stochastic gradient:
il = ’ -
Vo,— Z [logD @ + log (1 - D (G (z(’))))} .
m i=1
end for

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior Bgllz):
e Update the generator by descending its stochastic gradient:

m

Vgg% ;10g (1 —D (G <z(i))>) .

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

»pg ™

D

GAN algorithm annotated

P data

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do

10t K steps do

e Sample minibatch of m noise samples {z(l), s g z(m)} from noise prior py(z).
e Sample minibatch of m examples {:c(l), . ,w(m)} from data generating distribution
pdata(w)~

@Update the discriminator by ascending its stochastic gradient:

m

GAN algorithm annotated

1 i i
D-Step V@dgz [logD(w()> + log (1—D(G (z())))} : .
L - gradient ascend
or
e Sample minibatch of m noise samples {z("), ... z(™} from noise prior py(2). (1mi)
e Update the generator by descending its stochastic gradient: ! maximize

Vo, 2 (1- 2 (6 (=))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-

tum in our experiments. /

2o
G

D

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(l), s g z(m)} from noise prior py(z).
e Sample minibatch of m examples {:c(l), . ,w(m)} from data generating distribution
pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo 3" [log D (59) +10g (1- D (6 (29)))].

end for
Sample minibatch of m noise samples {z1), ..., 2(")} from noise prior Bgllz):
e Update the generator by descending its stochastic gradient: ——

m

Vgg%;bg (1 —D (G 1 2))) .
end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

»pg ™

GAN algorithm annotated

P data

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do
e Sample minibatch of m noise samples {z(l), s g z(m)} from noise prior py(z).
e Sample minibatch of m examples {:c(l), e ,w(m)} from data generating distribution
pdata(w)~

e Update the discriminator by ascending its stochastic gradient:

Vo 3" [log D (59) +10g (1- D (6 (29)))].

end for
ample minibatch of m noise samples {z(l), : reg z(m)} from noise prior py (2N
@®Update the generator by descending its stochastic gradient:

G-step veg%ibg (1-p(c(=7)))

end for

GAN algorithm annotated

gradient descend
(minimize)

a parameterized
loss function

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments. //—\

G

“to guide this part

P data

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of .
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our a g O rl l I l a n n O a e

experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(l), s g z(m)} from noise prior py(z).
e Sample minibatch of m examples {:c(l), . ,w(m)} from data generating distribution
pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

Ved% f; [logD (:B(i)> + log (1 — P (G (z(i))))} : |te I"atl ng

end for min_max

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior Bgllz):
e Update the generator by descending its stochastic gradient:

m

Vgg% ;10g (1 —D (G <z(i))>) .

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

D

P data

Theoretical Results

1. For any given G, the optimal D is:
pdata(m)

D7 (x) =
) = (@) + (@
1.0 —— p_data (mu=-1, std=1)
D

0.8

0.6

0.4 - Pdata

0.2

0.0 1

Recap (Lec. 1): Discriminative vs. Generative

discriminative generative

p(z|ly =0)

Theoretical Results

2. With the optimal D, the objective function is:
E(D*, G) — 2l)JS(pdata”pg) T 21Og2

where D ;qis Jensen—Shannon divergence

Background: Jensen—Shannon divergence

D ;¢ “total divergence to the average”

1 p+q 1 P+q
Djs(pllg) = §DKL(p||—) - 2DKL(q|——)

pdf integrand
0.25 1

0.20 - DKL (p‘ ‘m

0.15 A
o10- D s(plla)
0.05 A

0.00 A

—0.05 A

—0.10 -

Background: Jensen—Shannon divergence

D ;¢ “total divergence to the average”

: P9 4 2 Drntal P T Y)

Djs(pllq) = §DKL(p|| 2

Properties:
* D ;qis symmetric;
e D,qis bounded: [0, log2];

* Djgis more stable

Theoretical Results

2. With the optimal D, the objective function is:
L(D*, G) — 2l)JS(pdata“pg) — 2 log 2

GAN optimizes for Jensen—Shannon divergence.

A
re

P data

y \

D

G

D ys(b || A0)

Theoretical Results

3. Global optimality is achieved at p,= pgu,

L(D*,G) = ITB5stpaalipy) — 2log 2
=)

b
e

]9data

y \

D

G* > D* Djs(b ||)

Theoretical Results: Summary

1. For any given G, the optimal D is:

* L pdata(x)
De(@) = J @) + po @

2. With optimal D, GAN optimizes for Jensen—Shannon divergence:

L(D*,G) = 2D js(pdatallpg) — 210g 2

3. Global optimality is achieved at p,= pgu,

L(D*,G*)=—2log?2

Running example: MNIST

2.0

—log D(z) —log(1 — D(G(2))) * D loss

loss

—logD(G(2)) * Gloss

—log(1 — D(G(z * 0SSt e
—logD(z) * |0SS, 4,

0.0 I I 1 I I T
0 100 200 300 400 500
epochs

*All objectives are negative of their original form Code adapted from: https://github.com/prcastro/pytorch-gan/tree/master

Running example: MNIST

max W/ G miln W/ ‘q
2.0
miln w/ D
—log D(x) —log(1 — D(G(2N) < D loss

loss

—log D(G(2))\(2_ G loss

YV
—log(1 — D(G(z * 0SSt e

—log D(z) o ° IOS‘S‘real
min W/ D

0.0 I 1 I I I I
0 100 200 300 400 500

epochs

*All objectives are negative of their original form Code adapted from: https://github.com/prcastro/pytorch-gan/tree/master

Running example: MNIST

2.0

loss

0.0 -

~ 1.39 (2log 2) ideally

[—logD(z) —log(l — D(G(2))) < D loss

—logD(G(2)) * Gloss

—log(1 — D(G(z * losste
R\ ~log D(z) : IOSS‘real
~ 0.69 (log 2) ideally

0 100

*All objectives are negative of their original form

200 300 400 500
epochs

Code adapted from: https://github.com/prcastro/pytorch-gan/tree/master

Running example: MNIST
et

ep 20 ep 50 ep 300 e

O

2.5]

2

U
N = (M e S

0.0 + . ; : . .
0 100 200 300 400 500
epochs

*All objectives are negative of their original form Code adapted from: https://github.com/prcastro/pytorch-gan/tree/master

Problems of GAN

Difficult to train/converge
* Hard to achieve equilibrium
* Vanishing gradients

* Mode collapse

Step 0 Step 5k Step 10k

Step 15k

o [l N w - w
1 1 1 1 1 1

d-real

M oscillating — drake
— gen
\ : 3 C(\: O Q/‘ Q[lf\ M (\ /} f\ f!{\
\
(I) 160 2(I)0 360 4(')0

Gradient of the generator with the original cost

— After 1 epoch
10° i — After 10 epochs |4
— After 25 epochs

|IVaL(D. gs)||

" v

vanishing grad

. | |
0 500 1000 1500 2000 2500 3000 3500 4000
Training iterations

mode collapse
Step 20k Step 25k

Running example: GAN Lab

Data Distribution

GAN Lab

O Use pre-trained model

MODEL OVERVIEW GRAPH "

Real

Noise Generator

Gradients

_Gradients

Discriminator

Prediction of
Samples

Epoch

¢ 001,130

LAYERED DISTRIBUTIONS METRICS
..j B Discriminator's Loss
1‘ B Generator's Loss
| 1.0
0.8 /ﬁ\jﬁ_/y’
06— fA———=
0.4
i‘ 0.2
! 0
1 0 1000 2000
| Discriminator
| loss I KL Divergence (by grid)
JS Divergence (by grid)
3
2
]
Generator 1
loss
0

0 500 1000 1500

|
|
|
I
I
I
I
|
|
|
|
|

Each dot is a 2D data sample: real samples; fake samples.

Background colors of grid cells represent discriminator's classifications.
Samples in green regions are likely to be real; those in purple regions likely fake.

Opacity encodes density: darker purple means more samples in smaller area.

Pink lines from fake samples represent gradients for generator.
& This sample needs to move upper right to decrease generator's loss.

https://poloclub.github.io/ganlab/

Wasserstein GAN

W-GAN in Short

For mathematicians:

* Wasserstein distance, instead of JS divergence

For engineers:
* remove logarithms

* clip weights

For laymen:

e art critic, instead of forgery expert

Recap: GAN optimizes for D ;¢

L(D*,G) = 2D js(pdaatallpg) — 2log 2

A

J% data

> D* Dyg(ah [[M)

Problems of D ¢

If p and g don’t overlap, D ;¢ is a constant (log2), i.e., no gradient

D5 = 0.693

Djg = 0.337 Djs = 0.633

2.00

1.75 A q 1.75 A q 1.75 4
1.50 1.50 1.50
1.25 A 1.25 A 1.25 A
Y Y Y
g 1.00 A 1 O g 1.00 + O 5 g 1.00 O 2
0.75 1 0.75 0.75 A

0.00

— p — P _ﬂ P

Problems of D ¢

If p and g don’t overlap, D ;¢ is a constant (log2), i.e., no gradient

D ;s = 0.693 D ;s = 0.693 D ;s = 0.693

\ N
p —— —
/ »
q 1.75 1 7 q 1.75
1.50 1.50
1.25 4 1.25
«
g 1.00 + o 1.00
0.7 0.75

} | Ap =4 0:50- } A= 00] jﬁ,u = 2

0.7
0.6-
0.5
0.4-
0.3
0.2-
0.1-

0.0

Problems of D ¢

D js versus Apu

D ;5 is useful only if p and g are close

2.00
1.75 A

1.50 A

S

S 1.00
0.75 1
0.50

0.25 A

0.00

Problems of DJS e D . is adelta function when p and g

are delta functions
D js versus Apu

D;s = 0.693

—~1.0 —0.5 0.0 0.5 1.0

0.7
0.6-
0.5-
0.4-
0.3
0.2-
0.1-

0.0

Problems of D ¢

* D ;qis adelta function when p and q
are delta functions

D js versus Apu

Can we have a

measure like this?

—~1.0

0.5

0.5

1.0

Djs = 0.693

Wasserstein Distance

“Earth Mover’s Distance”

2.00
\ —
1.75 4 q
1.50 A
1.25 A + a
5
=4 1.00 +
0.75 A
>
0.25 \
0.00 T T T
—4 -2 0 2 4

Running example: Wasserstein Distance

Pl P2 PS P4 Q 1 QZ QB Qél

Running example: Wasserstein Distance

Pl P2 P3 P4

Running example: Wasserstein Distance

2 shovelfuls

Pl P2 P3 P4 Q 1 QZ QS Q4

Running example: Wasserstein Distance

2 shovelfuls

Pl P2 P3 P4

Running example: Wasserstein Distance

1 shovelful

-

Pl P2 P3 P4

Running example: Wasserstein Distance

Pl P2 P3 P4 Q 1 QZ QS Qél

Running example: Wasserstein Distance

Pl P2 P3 P4 Q 1 QZ QS Qél

Running example: Wasserstein Distance

p P, P, P cdfp C de Q, @, Q @

e cdf: cumulative distribution function

Running example: Wasserstein Distance

> " ledfp (i) — cdfg(i)]

cdf Q

Q, Q, Q Q

Wasserstein Distance
-@Vasserstein Distance (1-d, discrete)

J,-norm WiP,Q) =) |cdfp(i) — cdfg (i)

e 1-Wasserstein Distance (1-d, continuous)

/ odf, (z) — cdf, (z)|dz

Recap: DJS * D ,gis a delta function when p and ¢
are delta functions

0.7
0.6-
0.5-
0.4-
0.3
0.2-
0.1-

0.0

D js versus Apu

Can we have a

measure like this?

—~1.0

0.5

0.5

1.0

Djs = 0.693

- D
g

Wasserstein Distance . pen p and q are delta functions:

Wi(p,q) = |up — 1q)

0.7
0.6-
0.5-
0.4-
0.3
0.2-
0.1-

0.0

—1.0 —0.5 0.0 0.5

1.0

pdf

Wasserstein Distance

e 1-Wasserstein Distance (high-dim, continuous)

Wi(p,q) = inf E,o~llT —
(00) =l Eaalle =3l

P,q)

e alljoint distributions v(x, y)
whose marginals are p and ¢

—————————————

W-GAN optimizes for Wasserstein Distance

Wi (pa Q) = Inf 4:(:c,y)~’y[|x — y”

vEIl(p,q)
bpg ™)
e

J% data

> net Wl(A& H“)

W-GAN optimizes for Wasserstein Distance

e Kantorovich-Rubinstein duality:

Wi(p,q) = ﬁ%zswp[f ()] — Eznglf ()]

e all 1-Lipschitz functions

W-GAN optimizes for Wasserstein Distance

e Kantorovich-Rubinstein duality:

Wi(p,q) = ﬁ%pr[f ()] — Eznglf ()]

e all 1-Lipschitz functions

K-Lipschitz continuity:
f(z) — fY)| < Klz—vy|, Vaz,y

gradient is bounded: - / G s i e 3w

(@) = f)l
z—y|

W-GAN optimizes for Wasserstein Distance

e Kantorovich-Rubinstein duality:

Wl p, 7%]:|up< E:crvp Equ[f(CC)]

K-Lipschitz continuity:
f(z) — fY)| < Klz—vy|, Vaz,y

W-GAN optimizes for Wasserstein Distance

 W-GAN'’s objective function:

A o [(2)] = Eanp, [for ()]

re

J% data

> S W, (b || -A0)

W-GAN optimizes for Wasserstein Distance

 W-GAN'’s objective function:
4 - 44
el B @/
y
A\ »

> S W, (b || -A0)

data

W-GAN optimizes for Wasserstein Distance

 W-GAN'’s objective function:

O pia | (T)] = Banpy [fo (2))]

o,
* weights are bounded: in practice, clipped [-0.01, 0.01]

e

J% data

> S W, (b || -A0)

W-GAN vs. original GAN

 W-GAN'’s objective function:

* clip weights * remove logarithms

e original GAN’s objective function (D-step):

?@ Ew~pdat@+ Ez~p, @]

W-GAN vs. original GAN ;. it

* value/merit/quality/...

* W-GAN’s objective function: * direction to improve (gradients)
ftIunEaV}\(/ <L:Ediata@m)] o <L:Efvpg [fw ('T)]

e original GAN’s objective function (D-step):

By, 10 DI)] + Ex o, [log(1 — D(2))

“forgery expert”
* real/fake

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper usedW-G A N a |go r I t h m a n n Otate d

the default values a = 0.00005, ¢ = 0.01, m = 64, Ncritic = O-

Require: : «, the learning rate. c, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wp, initial critic parameters. 6y, initial generator’s parameters.
1: while 6 has not converged do
for t = 0, <y Neritic do
Sample {2V}, ~ P, a batch from the real data.

2

3

4: Sample {z(V}™ . ~ p(2) a batch of prior samples. ;

6:
7
8
9

w < w + a - RMSProp(w, g.) _—
w « clip(w, —¢,c) . .
end for ——— Clip weights
Sample {z(V}7 ~ p(z) a batch of prior samples.
100 gp < —Veorm >iny ful(ge(z?))
11 0 < 0 — a- RMSProp(6, gs)
12: end while

»pg ™

> Jao W, (b || -A0)

P
Pdata

W-GAN vs. original GAN

1.0 . . . ' . 1 '
— Density of real
— Density of fake

— GAN Discriminator ||

—— WGAN Critic

0.8 +

0.6

-0.2 Vanishing gradients
in regular GAN

8 =5 —4 = 0 2 4 6 8

W-GAN vs. original GAN

\ |
KDE » - p
original ‘ 4
GAN | -
sigral : ,\ ' N AN
Samples E 3 ‘ | ’
KDE
W-GAN
Samples

‘Epoch0 Epochl Epoch5 Epoch10 Epoch20 Epoch50 Epoch 100

W-GAN in Short

For mathematicians:

* Wasserstein distance, instead of JS divergence

For engineers:

* remove logarithms \y3sserstein distance
* clip weights

Lipschitz continuity

For laymen:

e artcritic instead of a forgery expert
— gradients

Brief: LSGAN, EBGAN

e Least Square (LS) GAN:
Eonpga(D(@) =0)° + Eynp, (D(z) — a)?

 Energy-based (EB) GAN:
IEil?f‘“pdata‘l)(m) + EmNpg [m o D(m)]_i_

Adversary as a Loss Function

Adversary as a Loss Function

* GAN essentially defines an adversarial loss function
* |nput to networks is not necessarily random/noise
 Beyond L2/L1: adversarial loss encourages output to look “realistic”

* Combined with L2/L1: reconstruction loss largely stabilizes training

Adversary as a Loss Function
* GAN: inputis random

& generator o discriminator — real/fake

Adversary as a Loss Function

* Input can be from another source

T encoder ~ generator 1’ discriminator real/fake

Adversary as a Loss Function

* Input can be from another source

(>

T encoder Z “decoder” x’ * parameterized loss function
* trained alternately

D

Example: Super-Resolution GAN * worse PSNR. but

* better PSNR better visual quality
original bicubic SRGAN
0.34dB/0.6562

(21.59dB/0.6423)

‘-ﬁ,‘.
=l P 4

3 s
e — =. - "’1‘ o 1
s 0 B e e
T A G "
') oy 1 PR
—_ = " ¥
-
i 1
= ",

Ledig, et al., “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, CVPR 2016

Example: Super-Resolution GAN

reconstruction

original reconstruction + adversarial

Ledig, et al., “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, CVPR 2016

Example: Context Encoder
Ours(L2) | Ours(AdV)

Example: pix2pix

Input _Ground truth 1/ | L1+ cGAN

Isola, et al., “Image-to-Image Translation with Conditional Adversarial Networks”, CVPR 2017

Example: CycleGAN

horse — zebra

Zhu, et al., “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, ICCV 2017

From VQ-VAE to VQ-GAN

codebook VQ-VAE: L2-0

€€ -.-.

/
\/
ConvNet ConvNet y
> VQ > VQ > T
encoder € encoder decoder q decoder
D
hxwXece hxwxe

hxw Xk VQ-GAN: L2 + Adv

From VQ-VAE to VQ-GAN

VQ-VAE VQ-GAN

— ,
DALL-E VAE (f8, 8192) VQGAN (f8, 8192) VQGAN (f16, 16384) VQGAN (f16, 1024)

H '//"l/:f z
O
W /

Z

VQG!

Esser, et al., “Taming Transformers for High-Resolution Image Synthesis”, CVPR 2021

Discussion

* To be precise: VQ-GAN = VQ-VAE + Adv Loss + Perceptual Loss

 w/o VQ, it’s VAE + Adv Loss + Perceptual Loss
=

—
* Both are the de factotokenizers in image generation
 w/ VQ: e.g., Autoregressive Models
[~

« w/o VQ: e.g., Diffusion Mode \/

table Diffusion) Sora) use these tokenizers

« Commercial models (e.g.

It involves everything!

This Lecture

* Generative Adversarial Networks (GAN)

* Wasserstein GAN (W-GAN)

* Adversary as a Loss Function

Main References
 Goodfellow et al. “Generative Adversarial Nets”, NeurlPS 2014

* Arjovsky et al. “Wasserstein Generative Adversarial Networks”, ICML 2017

