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Generative Adversarial Networks



Overview
• Generative Adversarial Networks (GAN)

• Wasserstein GAN (W-GAN)

• Adversary as a Loss Function



Generative Adversarial Networks 
(GAN)



Introduction 
• “Generative”
• “Discriminative” was dominant back then

• “Adversarial”
• Generative models w/ discriminative models
• Min-max process

• “Networks”
• SGD + backprop for problem solving



Represent a distribution by a neural network:
• z  - latent variables
• x - observed variables

Recap: Latent Variable Models

pz(z)

generator

pg(x)

See Lecture 2, Variational Autoencoder: https://mit-6s978.github.io/assets/pdfs/lec2_vae.pdf



Autoencoding distributions:
“Encoding” data distribution pdata into latent distribution pz

Recap: Variational Autoencoder (VAE)

See Lecture 2, Variational Autoencoder: https://mit-6s978.github.io/assets/pdfs/lec2_vae.pdf

pz(z)

generator

pg(x)pdata(x)

encoder

“Reconstruction” loss



What’s the implication of a “reconstruction” loss?
• Elements (e.g., pixels) are independently distributed
• Each element follows a simple distribution (Gaussian/Bernoulli/...)

Assumptions are too strict for high-dim variables

Can we measure the distribution difference in another way?



Generative Adversarial Networks
Representing distribution difference by a neural network

pz(z)

generator

pg(x)

pdata(x)

network



Generative Adversarial Networks
Representing distribution difference by a neural network
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Generative Adversarial Networks
Representing distribution difference by a neural network

pz(z)

generator

pg(x)

pdata(x)

discriminator “fake”

z x
“fake” data 



Generative Adversarial Networks
Representing distribution difference by a neural network

pz(z)

generator

pg(x)

discriminator “real”

pdata(x)

“real” data 
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pdata

encoder
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GAN
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pz

pdata

pg

discriminator or        ?generator

pz

VAE
generation

GAN
generation



Adversarial Objective

pdata

pg

D or        ?G

pz

min-max process
(vs. EM’s max-max process)



Adversarial Objective: D-step

pdata
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D-step: fix G, optimize D



Adversarial Objective: D-step
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D-step: fix G, optimize D
• D to classify real or fake
• binary logistic regression (sigmoid + cross-entropy)  

push to 1 push to 0
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Adversarial Objective: G-step
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• generate fake data such that D classifies it as “real”
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Adversarial Objective: G-step

push to 1

max
a “flip” trick:

Early in training:
• G is poor
• D(G) is near 0

weak grad

strong grad



D or        ?G

GAN algorithm annotatedminibatch SGD

pz

pg

pdata



pdata

pg

D or        ?G

pz

GAN algorithm annotated



pdata

pg

D or        ?G

pz

GAN algorithm annotated



pdata

pg

D or        ?G

pz

GAN algorithm annotated

gradient ascend
(maximize)

D-step
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pdata

pg

D or        ?G

pz

GAN algorithm annotated

gradient descend
(minimize)

G-step
a parameterized 

loss function

to guide this part



pdata

pg

D or        ?G

pz

GAN algorithm annotated

iterating
min-max



Theoretical Results
1. For any given G, the optimal D is:

pdata pg

D



Recap (Lec. 1): Discriminative vs. Generative

discriminative generative



Theoretical Results
2. With the optimal DG, the objective function is:

See proof in “Generative Adversarial Nets”, Goodfellow, et al., 2014 

where DJS is Jensen–Shannon divergence



Background: Jensen–Shannon divergence
DJS: “total divergence to the average”

p q

DJS(p||q)

DKL(p||m) DKL(q||m)



Background: Jensen–Shannon divergence
DJS: “total divergence to the average”

Properties:

• DJS is symmetric; DKL is not

• DJS is bounded: [0, log2]; DKL is unbounded: [0, inf)

• DJS is more stable



Theoretical Results
2. With the optimal DG, the objective function is:

See proof in “Generative Adversarial Nets”, Goodfellow, et al., 2014 

GAN optimizes for Jensen–Shannon divergence. 

pdata

pg

D*G

pz

DJS( ||     )
up to some constant



DJS( ||     )

Theoretical Results
3. Global optimality is achieved at pg= pdata 

See proof in “Generative Adversarial Nets”, Goodfellow, et al., 2014 

pdata

pg

D*G*

pz
up to some constant



1. For any given G, the optimal D is:

2. With optimal DG, GAN optimizes for Jensen–Shannon divergence:

3. Global optimality is achieved at pg= pdata 

Theoretical Results: Summary



• D loss

• lossfake
• lossreal

• G loss

Running example: MNIST

Code adapted from: https://github.com/prcastro/pytorch-gan/tree/master*All objectives are negative of their original form



• D loss

• lossfake
• lossreal

• G loss

Running example: MNIST

Code adapted from: https://github.com/prcastro/pytorch-gan/tree/master*All objectives are negative of their original form

min w/ D

min w/ D

max w/ G
min w/ G



• D loss

• lossfake
• lossreal

• G loss

Running example: MNIST

Code adapted from: https://github.com/prcastro/pytorch-gan/tree/master*All objectives are negative of their original form

ideally

ideally



Running example: MNIST

Code adapted from: https://github.com/prcastro/pytorch-gan/tree/master*All objectives are negative of their original form

ep 1 ep 20 ep 50 ep 300 ep 500



Problems of GAN
Difficult to train/converge

• Hard to achieve equilibrium

• Vanishing gradients

• Mode collapse

J. Brownlee, “How to Identify and Diagnose GAN Failure Modes”

oscillating

mode collapse

L. Metz, “Unrolled Generative Adversarial Networks”

vanishing grad

Arjovsky & Bottou, “Towards Principled Methods for Training GANs”



Running example: GAN Lab https://poloclub.github.io/ganlab/

https://poloclub.github.io/ganlab/


Wasserstein GAN



W-GAN in Short
For mathematicians:
• Wasserstein distance, instead of JS divergence

For engineers:
• remove logarithms
• clip weights

For laymen:
• art critic, instead of forgery expert

Summarized by Reddit user danielvarga: https://www.reddit.com/r/MachineLearning/comments/5qxoaz/comment/dd7aomb/



Recap: GAN optimizes for DJS

pdata

pg

D* DJS( ||     )



Problems of DJS 
If p and q don’t overlap, DJS is a constant (log2), i.e., no gradient



Problems of DJS 
If p and q don’t overlap, DJS is a constant (log2), i.e., no gradient



Problems of DJS 
• DJS is useful only if p and q are close



Problems of DJS • DJS is a delta function when p and q 
are delta functions



Problems of DJS • DJS is a delta function when p and q 
are delta functions

Can we have a 
measure like this?



Wasserstein Distance
“Earth Mover’s Distance”



Running example: Wasserstein Distance

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994



Running example: Wasserstein Distance

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994



Running example: Wasserstein Distance

2 shovelfuls

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994



Running example: Wasserstein Distance

2 shovelfuls

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994



Running example: Wasserstein Distance

1 shovelful

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994



Running example: Wasserstein Distance

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994



Running example: Wasserstein Distance

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994



Running example: Wasserstein Distance

• cdf: cumulative distribution function

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994



Running example: Wasserstein Distance

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994



Wasserstein Distance
• 1-Wasserstein Distance (1-d, discrete)

• 1-Wasserstein Distance (1-d, continuous)

l1-norm



Recap: DJS • DJS is a delta function when p and q 
are delta functions

Can we have a 
measure like this?



Wasserstein Distance • when p and q are delta functions:



Wasserstein Distance
• 1-Wasserstein Distance (high-dim, continuous)

• all joint distributions γ(x, y) 
whose marginals are p and q

p

q

γ(x, y)

Figure: https://en.wikipedia.org/wiki/Wasserstein_metric



W-GAN optimizes for Wasserstein Distance

pdata

pg

net W1( ||     )



W-GAN optimizes for Wasserstein Distance
• Kantorovich-Rubinstein duality:

• all 1-Lipschitz functions



W-GAN optimizes for Wasserstein Distance
• Kantorovich-Rubinstein duality:

• all 1-Lipschitz functions

Figure from: https://en.wikipedia.org/wiki/Lipschitz_continuity

gradient is bounded:

K-Lipschitz continuity:



• Kantorovich-Rubinstein duality:

W-GAN optimizes for Wasserstein Distance

K-Lipschitz continuity:



W-GAN optimizes for Wasserstein Distance
• W-GAN’s objective function:

pdata

pg

fw W1( ||     )



W-GAN optimizes for Wasserstein Distance
• W-GAN’s objective function:
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W-GAN optimizes for Wasserstein Distance
• W-GAN’s objective function:

pdata

pg

fw W1( ||     )

• weights are bounded: in practice, clipped [-0.01, 0.01] 



W-GAN vs. original GAN
• W-GAN’s objective function:

• original GAN’s objective function (D-step):

• remove logarithms• clip weights



W-GAN vs. original GAN
• W-GAN’s objective function:

• original GAN’s objective function (D-step):

“art critic”
• value/merit/quality/...
• direction to improve (gradients)

“forgery expert”
• real/fake



W-GAN algorithm annotated

pdata

pg

fwg

pz

W1( ||     )

remove logarithms

clip weights



W-GAN vs. original GAN



W-GAN vs. original GAN

original
GAN

W-GAN



W-GAN in Short
For mathematicians:
• Wasserstein distance, instead of JS divergence

For engineers:
• remove logarithms
• clip weights

For laymen:
• art critic instead of a forgery expert

Summarized by Reddit user danielvarga: https://www.reddit.com/r/MachineLearning/comments/5qxoaz/comment/dd7aomb/

Wasserstein distance

Lipschitz continuity

gradients



Brief: LSGAN, EBGAN
• Least Square (LS) GAN:

• Energy-based (EB) GAN:

Mao, et al., “Least Squares Generative Adversarial Networks”, ICCV 2017
Zhao, et al., “Energy-based Generative Adversarial Networks”, ICLR 2017



Adversary as a Loss Function



Adversary as a Loss Function
• GAN essentially defines an adversarial loss function

• Input to networks is not necessarily random/noise

• Beyond L2/L1: adversarial loss encourages output to look “realistic”

• Combined with L2/L1: reconstruction loss largely stabilizes training



Adversary as a Loss Function

generatorz x discriminator real/fake

• GAN: input is random



Adversary as a Loss Function

reconstruction adversarial

generatorz x’ discriminator real/fakex encoder

• Input can be from another source 



Adversary as a Loss Function
• Input can be from another source 

“decoder”z x’x encoder

l2

D

reconstruction 
loss

adversarial
loss

• parameterized loss function
• trained alternately



Example: Super-Resolution GAN

Ledig, et al., “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, CVPR 2016

• better PSNR
• worse PSNR, but 

better visual quality



Example: Super-Resolution GAN

Ledig, et al., “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, CVPR 2016

reconstruction
+ adversarialreconstructionoriginal



Example: Context Encoder

Pathak, et al., “Context Encoders: Feature Learning by Inpainting”, CVPR 2016



Example: pix2pix

Isola, et al., “Image-to-Image Translation with Conditional Adversarial Networks”, CVPR 2017



Example: CycleGAN

Zhu, et al., “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, ICCV 2017



From VQ-VAE to VQ-GAN

Esser, et al., “Taming Transformers for High-Resolution Image Synthesis”, CVPR 2021

ze
VQ 

encoder
VQ

decoder zq
ConvNet
encoder

ConvNet
decoder

codebook

e0 e1 ...

zx x’

l2

VQ-VAE: L2-only

D

VQ-GAN: L2 + Adv



From VQ-VAE to VQ-GAN

Esser, et al., “Taming Transformers for High-Resolution Image Synthesis”, CVPR 2021

VQ-VAE VQ-GAN



Discussion
• To be precise: VQ-GAN = VQ-VAE + Adv Loss + Perceptual Loss

• w/o VQ, it’s VAE + Adv Loss + Perceptual Loss

• Both are the de facto tokenizers in image generation
• w/ VQ: e.g., Autoregressive Models
• w/o VQ: e.g., Diffusion Models

• Commercial models (e.g., Stable Diffusion, Sora) use these tokenizers

It involves everything!



This Lecture
• Generative Adversarial Networks (GAN)

• Wasserstein GAN (W-GAN)

• Adversary as a Loss Function



Main References
• Goodfellow et al. “Generative Adversarial Nets”, NeurIPS 2014
• Arjovsky et al. “Wasserstein Generative Adversarial Networks”, ICML 2017


