
DG

6.S978 Deep Generative Models

Kaiming He
Fall 2024, EECS, MIT

Lecture 4

Generative Adversarial Networks

Overview
• Generative Adversarial Networks (GAN)

• Wasserstein GAN (W-GAN)

• Adversary as a Loss Function

Generative Adversarial Networks
(GAN)

Introduction
• “Generative”
• “Discriminative” was dominant back then

• “Adversarial”
• Generative models w/ discriminative models
• Min-max process

• “Networks”
• SGD + backprop for problem solving

Represent a distribution by a neural network:
• z - latent variables
• x - observed variables

Recap: Latent Variable Models

pz(z)

generator

pg(x)

See Lecture 2, Variational Autoencoder: https://mit-6s978.github.io/assets/pdfs/lec2_vae.pdf

Autoencoding distributions:
“Encoding” data distribution pdata into latent distribution pz

Recap: Variational Autoencoder (VAE)

See Lecture 2, Variational Autoencoder: https://mit-6s978.github.io/assets/pdfs/lec2_vae.pdf

pz(z)

generator

pg(x)pdata(x)

encoder

“Reconstruction” loss

What’s the implication of a “reconstruction” loss?
• Elements (e.g., pixels) are independently distributed
• Each element follows a simple distribution (Gaussian/Bernoulli/...)

Assumptions are too strict for high-dim variables

Can we measure the distribution difference in another way?

Generative Adversarial Networks
Representing distribution difference by a neural network

pz(z)

generator

pg(x)

pdata(x)

network

Generative Adversarial Networks
Representing distribution difference by a neural network

pz(z)

generator

pg(x)

pdata(x)

discriminator or ?

Generative Adversarial Networks
Representing distribution difference by a neural network

pz(z)

generator

pg(x)

pdata(x)

discriminator “fake”

z x
“fake” data

Generative Adversarial Networks
Representing distribution difference by a neural network

pz(z)

generator

pg(x)

discriminator “real”

pdata(x)

“real” data

decoder
pg

pdata

encoder

qz

pz

pdata

pg

discriminator or ?generator

pz

VAE

GAN

decoder
pg

pdata

encoder

qz

pz

pdata

pg

discriminator or ?generator

pz

VAE
generation

GAN
generation

Adversarial Objective

pdata

pg

D or ?G

pz

min-max process
(vs. EM’s max-max process)

Adversarial Objective: D-step

pdata

pg

D or ?G

pz

D-step: fix G, optimize D

Adversarial Objective: D-step

pdata

pg

D or ?G

pz

D-step: fix G, optimize D
• D to classify real or fake
• binary logistic regression (sigmoid + cross-entropy)

push to 1 push to 0

Adversarial Objective: D-step

pdata

pg

D or ?G

pz

D-step: fix G, optimize D
• D to classify real or fake
• binary logistic regression (sigmoid + cross-entropy)

push to 1 push to 0

Adversarial Objective: G-step

pdata

pg

D or ?G

pz

G-step: fix D, optimize G

Adversarial Objective: G-step

pdata

pg

D or ?G

pz

G-step: fix D, optimize G

Adversarial Objective: G-step

pg

D or ?G

pz

G-step: fix D, optimize G
• generate fake data such that D classifies it as “real”
• G to “confuse” D

push to 1

Adversarial Objective: G-step

pg

D or ?G

pz

G-step: fix D, optimize G
• generate fake data such that D classifies it as “real”
• G to “confuse” D

push to 1

max
a “flip” trick:

Adversarial Objective: G-step

push to 1

max
a “flip” trick:

Early in training:
• G is poor
• D(G) is near 0

weak grad

strong grad

D or ?G

GAN algorithm annotatedminibatch SGD

pz

pg

pdata

pdata

pg

D or ?G

pz

GAN algorithm annotated

pdata

pg

D or ?G

pz

GAN algorithm annotated

pdata

pg

D or ?G

pz

GAN algorithm annotated

gradient ascend
(maximize)

D-step

pdata

pg

D or ?G

pz

GAN algorithm annotated

pdata

pg

D or ?G

pz

GAN algorithm annotated

gradient descend
(minimize)

G-step
a parameterized

loss function

to guide this part

pdata

pg

D or ?G

pz

GAN algorithm annotated

iterating
min-max

Theoretical Results
1. For any given G, the optimal D is:

pdata pg

D

Recap (Lec. 1): Discriminative vs. Generative

discriminative generative

Theoretical Results
2. With the optimal DG, the objective function is:

See proof in “Generative Adversarial Nets”, Goodfellow, et al., 2014

where DJS is Jensen–Shannon divergence

Background: Jensen–Shannon divergence
DJS: “total divergence to the average”

p q

DJS(p||q)

DKL(p||m) DKL(q||m)

Background: Jensen–Shannon divergence
DJS: “total divergence to the average”

Properties:

• DJS is symmetric; DKL is not

• DJS is bounded: [0, log2]; DKL is unbounded: [0, inf)

• DJS is more stable

Theoretical Results
2. With the optimal DG, the objective function is:

See proof in “Generative Adversarial Nets”, Goodfellow, et al., 2014

GAN optimizes for Jensen–Shannon divergence.

pdata

pg

D*G

pz

DJS(||)
up to some constant

DJS(||)

Theoretical Results
3. Global optimality is achieved at pg= pdata

See proof in “Generative Adversarial Nets”, Goodfellow, et al., 2014

pdata

pg

D*G*

pz
up to some constant

1. For any given G, the optimal D is:

2. With optimal DG, GAN optimizes for Jensen–Shannon divergence:

3. Global optimality is achieved at pg= pdata

Theoretical Results: Summary

• D loss

• lossfake
• lossreal

• G loss

Running example: MNIST

Code adapted from: https://github.com/prcastro/pytorch-gan/tree/master*All objectives are negative of their original form

• D loss

• lossfake
• lossreal

• G loss

Running example: MNIST

Code adapted from: https://github.com/prcastro/pytorch-gan/tree/master*All objectives are negative of their original form

min w/ D

min w/ D

max w/ G
min w/ G

• D loss

• lossfake
• lossreal

• G loss

Running example: MNIST

Code adapted from: https://github.com/prcastro/pytorch-gan/tree/master*All objectives are negative of their original form

ideally

ideally

Running example: MNIST

Code adapted from: https://github.com/prcastro/pytorch-gan/tree/master*All objectives are negative of their original form

ep 1 ep 20 ep 50 ep 300 ep 500

Problems of GAN
Difficult to train/converge

• Hard to achieve equilibrium

• Vanishing gradients

• Mode collapse

J. Brownlee, “How to Identify and Diagnose GAN Failure Modes”

oscillating

mode collapse

L. Metz, “Unrolled Generative Adversarial Networks”

vanishing grad

Arjovsky & Bottou, “Towards Principled Methods for Training GANs”

Running example: GAN Lab https://poloclub.github.io/ganlab/

https://poloclub.github.io/ganlab/

Wasserstein GAN

W-GAN in Short
For mathematicians:
• Wasserstein distance, instead of JS divergence

For engineers:
• remove logarithms
• clip weights

For laymen:
• art critic, instead of forgery expert

Summarized by Reddit user danielvarga: https://www.reddit.com/r/MachineLearning/comments/5qxoaz/comment/dd7aomb/

Recap: GAN optimizes for DJS

pdata

pg

D* DJS(||)

Problems of DJS
If p and q don’t overlap, DJS is a constant (log2), i.e., no gradient

Problems of DJS
If p and q don’t overlap, DJS is a constant (log2), i.e., no gradient

Problems of DJS
• DJS is useful only if p and q are close

Problems of DJS • DJS is a delta function when p and q
are delta functions

Problems of DJS • DJS is a delta function when p and q
are delta functions

Can we have a
measure like this?

Wasserstein Distance
“Earth Mover’s Distance”

Running example: Wasserstein Distance

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994

Running example: Wasserstein Distance

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994

Running example: Wasserstein Distance

2 shovelfuls

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994

Running example: Wasserstein Distance

2 shovelfuls

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994

Running example: Wasserstein Distance

1 shovelful

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994

Running example: Wasserstein Distance

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994

Running example: Wasserstein Distance

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994

Running example: Wasserstein Distance

• cdf: cumulative distribution function

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994

Running example: Wasserstein Distance

Figure inspired by: Lilian Weng, “From GAN to WGAN”, arXiv:1904.08994

Wasserstein Distance
• 1-Wasserstein Distance (1-d, discrete)

• 1-Wasserstein Distance (1-d, continuous)

l1-norm

Recap: DJS • DJS is a delta function when p and q
are delta functions

Can we have a
measure like this?

Wasserstein Distance • when p and q are delta functions:

Wasserstein Distance
• 1-Wasserstein Distance (high-dim, continuous)

• all joint distributions γ(x, y)
whose marginals are p and q

p

q

γ(x, y)

Figure: https://en.wikipedia.org/wiki/Wasserstein_metric

W-GAN optimizes for Wasserstein Distance

pdata

pg

net W1(||)

W-GAN optimizes for Wasserstein Distance
• Kantorovich-Rubinstein duality:

• all 1-Lipschitz functions

W-GAN optimizes for Wasserstein Distance
• Kantorovich-Rubinstein duality:

• all 1-Lipschitz functions

Figure from: https://en.wikipedia.org/wiki/Lipschitz_continuity

gradient is bounded:

K-Lipschitz continuity:

• Kantorovich-Rubinstein duality:

W-GAN optimizes for Wasserstein Distance

K-Lipschitz continuity:

W-GAN optimizes for Wasserstein Distance
• W-GAN’s objective function:

pdata

pg

fw W1(||)

W-GAN optimizes for Wasserstein Distance
• W-GAN’s objective function:

pdata

pg

fw W1(||)

W-GAN optimizes for Wasserstein Distance
• W-GAN’s objective function:

pdata

pg

fw W1(||)

• weights are bounded: in practice, clipped [-0.01, 0.01]

W-GAN vs. original GAN
• W-GAN’s objective function:

• original GAN’s objective function (D-step):

• remove logarithms• clip weights

W-GAN vs. original GAN
• W-GAN’s objective function:

• original GAN’s objective function (D-step):

“art critic”
• value/merit/quality/...
• direction to improve (gradients)

“forgery expert”
• real/fake

W-GAN algorithm annotated

pdata

pg

fwg

pz

W1(||)

remove logarithms

clip weights

W-GAN vs. original GAN

W-GAN vs. original GAN

original
GAN

W-GAN

W-GAN in Short
For mathematicians:
• Wasserstein distance, instead of JS divergence

For engineers:
• remove logarithms
• clip weights

For laymen:
• art critic instead of a forgery expert

Summarized by Reddit user danielvarga: https://www.reddit.com/r/MachineLearning/comments/5qxoaz/comment/dd7aomb/

Wasserstein distance

Lipschitz continuity

gradients

Brief: LSGAN, EBGAN
• Least Square (LS) GAN:

• Energy-based (EB) GAN:

Mao, et al., “Least Squares Generative Adversarial Networks”, ICCV 2017
Zhao, et al., “Energy-based Generative Adversarial Networks”, ICLR 2017

Adversary as a Loss Function

Adversary as a Loss Function
• GAN essentially defines an adversarial loss function

• Input to networks is not necessarily random/noise

• Beyond L2/L1: adversarial loss encourages output to look “realistic”

• Combined with L2/L1: reconstruction loss largely stabilizes training

Adversary as a Loss Function

generatorz x discriminator real/fake

• GAN: input is random

Adversary as a Loss Function

reconstruction adversarial

generatorz x’ discriminator real/fakex encoder

• Input can be from another source

Adversary as a Loss Function
• Input can be from another source

“decoder”z x’x encoder

l2

D

reconstruction
loss

adversarial
loss

• parameterized loss function
• trained alternately

Example: Super-Resolution GAN

Ledig, et al., “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, CVPR 2016

• better PSNR
• worse PSNR, but

better visual quality

Example: Super-Resolution GAN

Ledig, et al., “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, CVPR 2016

reconstruction
+ adversarialreconstructionoriginal

Example: Context Encoder

Pathak, et al., “Context Encoders: Feature Learning by Inpainting”, CVPR 2016

Example: pix2pix

Isola, et al., “Image-to-Image Translation with Conditional Adversarial Networks”, CVPR 2017

Example: CycleGAN

Zhu, et al., “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, ICCV 2017

From VQ-VAE to VQ-GAN

Esser, et al., “Taming Transformers for High-Resolution Image Synthesis”, CVPR 2021

ze
VQ

encoder
VQ

decoder zq
ConvNet
encoder

ConvNet
decoder

codebook

e0 e1 ...

zx x’

l2

VQ-VAE: L2-only

D

VQ-GAN: L2 + Adv

From VQ-VAE to VQ-GAN

Esser, et al., “Taming Transformers for High-Resolution Image Synthesis”, CVPR 2021

VQ-VAE VQ-GAN

Discussion
• To be precise: VQ-GAN = VQ-VAE + Adv Loss + Perceptual Loss

• w/o VQ, it’s VAE + Adv Loss + Perceptual Loss

• Both are the de facto tokenizers in image generation
• w/ VQ: e.g., Autoregressive Models
• w/o VQ: e.g., Diffusion Models

• Commercial models (e.g., Stable Diffusion, Sora) use these tokenizers

It involves everything!

This Lecture
• Generative Adversarial Networks (GAN)

• Wasserstein GAN (W-GAN)

• Adversary as a Loss Function

Main References
• Goodfellow et al. “Generative Adversarial Nets”, NeurIPS 2014
• Arjovsky et al. “Wasserstein Generative Adversarial Networks”, ICML 2017

