Lecture 3

Autoregressive Models

6.S978 Deep Generative Models

Kaiming He Fall 2024, EECS, MIT

Overview

• Conditional Distribution Modeling

• Autoregressive Models

• Network Architectures for Autoregressive Modeling

Joint Distribution

It's convenient to model joint distributions by **independent** distributions

Joint Distribution

Real-word problems always involve dependent variables

Joint Distribution

Real-word problems always involve dependent variables

How to Model Joint Distributions?

Solution 1: Modeling by **independent** latents (e.g., VAE)

- mapping: independent ⇒ dependent
- strict assumption for **high-dim** data (e.g., 32x32x3 pixels)
- often with **low-dim** latents
- a good building block, but often not sufficient

VAE results on 784-d MNIST data

 $859 + 632162$ $74; 6303601$ (a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

> Too strict to model the 784-d (28x28) joint distribution by independent distributions

> > Figure from: Kingma and Welling. "Auto-Encoding Variational Bayes", ICLR 2014

How to Model Joint Distributions?

Solution 1: Modeling by **independent** latents

Solution 2: Modeling by **conditional** distributions

Chain rule:

Any joint distribution can be written as a product of conditionals

$$
p(A, B) = p(A)p(B \mid A)
$$

Chain rule:

Any joint distribution can be written as a product of conditionals

$$
p(A, B, C) = p(A)p(B | A)p(C | A, B)
$$

Chain rule:

Any joint distribution can be written as a product of conditionals

$$
p(A, B, C) = p(A)p(B | A)p(C | A, B)
$$

*example: binary variables

Chain rule:

Any joint distribution can be written as a product of conditionals

$$
p(A, B, C) = p(A)p(B | A)p(C | A, B)
$$

Chain rule:

Any joint distribution can be written as a product of conditionals

Chain rule:

Any joint distribution can be written as a product of conditionals

in any order:
$$
p(A, B, C) = p(A)p(B | A)p(C | A, B)
$$

$$
= p(A)p(C | A)p(B | A, C)
$$

$$
= p(B)p(A | B)p(C | A, B)
$$

$$
= p(B)p(C | B)p(A | B, C)
$$

$$
= p(C)p(A | C)p(B | A, C)
$$

$$
= p(C)p(B | C)p(A | B, C)
$$

* This is a foundation of Masked Autoregressive (MAR) models: Li, et al. Autoregressive Image Generation without Vector Quantization, 2024

Chain rule:

Any joint distribution can be written as a product of conditionals **in any partition**: $p(A, B, C, D) = p(A, B)p(C, D | A, B)$ $p(C, D)p(A, B | C, D)$ $p(A, B, C)p(D | A, B, C)$ *p*(*A, B, C, D*) = ... *p*(*B, C*)*p*(*A*, *D | B, C*)

> * This is a foundation of Masked Autoregressive (MAR) models: Li, et al. Autoregressive Image Generation without Vector Quantization, 2024

Case Study: Conditional Distribution Modeling

Case 1: Partitioning the input representation space *x*

Example: Autoregressive Models on text tokens or pixels

$$
p(x_1, x_2, ..., x_n) = p(x_1)p(x_2 | x_1)...p(x_n | x_1, x_2, ..., x_{n-1})
$$

Case Study: Conditional Distribution Modeling

Case 2: Partitioning the latent representation space *z*

Example: Autoregressive Models on VQ-VAE tokens

 $p(\mathbf{x}, \mathbf{z}) = p(\mathbf{z})p(\mathbf{x} | \mathbf{z})$ with $p(\mathbf{z}) = p(z_1)p(z_2 | z_1)...p(z_n | z_1, z_2,..., z_{n-1})$

Case Study: Conditional Distribution Modeling

Case 3: Progressively transforming data distributions

Example: Diffusion Models

$$
p(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) p(\mathbf{x}_{T-1} | \mathbf{x}_T) ... p(\mathbf{x}_1 | \mathbf{x}_2) p(\mathbf{x}_0 | \mathbf{x}_1)
$$

Same spirit as Deep Learning: "**Divide-and-Conquer**"

• Chain rule of **derivatives** (backprop):

$$
\frac{\partial \mathcal{E}}{\partial x_1} = \frac{\partial \mathcal{E}}{\partial x_3} \frac{\partial x_3}{\partial x_2} \frac{\partial x_2}{\partial x_1}
$$

• Chain rule of **probability**:

$$
p(x_1, x_2, x_3) = p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2)
$$

Modeling each conditional distribution with a neural network

$$
p(A, B, C) = p_{\theta}(A)p_{\phi}(B \mid A)p_{\psi}(C \mid A, B)
$$

Modeling each conditional distribution with a neural network

Modeling each conditional distribution with a neural network

$$
p(A, B, C) = p_{\theta}(A)p_{\phi}(B \mid A)p_{\psi}(C \mid A, B)
$$

Note:

- parameterizing $p(A, B, C)$ vs. parameterizing $p(C | A, B)$?
	- $p(A, B, C)$ has 3 variables
	- $p(C \mid A, B)$ has 1 variable and 2 conditions (conditions are network inputs)
- weight sharing?
	- conceptually, each *p* has its own weights
	- weight sharing implies inductive biases (discussed later)

Dependency Graphs

- Decompose a joint distribution ⇒ induce a dependency graph
- Dependency graphs reflect prior knowledge

 $p(A, B, C) = p(A)p(B | A)p(C | A, B)$

Dependency Graphs

• Some dependency graphs may induce **simpler** distributions ...

Both are valid formulations. But one may be simpler to learn than the other.

Dependency Graphs

• Some dependency graphs may induce **simpler** distributions ...

E.g., see: Hua, et al. "Self-supervision through Random Segments with Autoregressive Coding (RandSAC)", ICLR 2022

Summary:

- Joint distribution ⇒ product of conditionals
- Chain rule: divide-and-conquer
- Any order, any partition
- Dependency graphs: induce prior knowledge

These are not specific to Autoregressive models.

ChatGPT: Next Token Prediction

What are generative models?

 \blacksquare

Your Keyboard

the first thing i noticed was that the first thing that came to

Auto + Regression

Auto: "self"

• using its "own" outputs as inputs for next perditions

Regression:

• estimating relationship between variables

Note:

- "Autoregressive" implies an inference-time behavior
- Training-time is not necessarily autoregressive (e.g., teacher forcing)

In general, **autoregression** is a way of modeling **joint** distribution by a product of **conditional** distributions:

$$
p(x_1, x_2, ..., x_n) = p(x_1)p(x_2 | x_1)...p(x_n | x_1, x_2, ..., x_{n-1})
$$

=
$$
\prod_{i=1}^{n} p(x_i | x_1, x_2, ..., x_{i-1})
$$

Conceptually, ...

- *x* can be **any** representation
	- not necessarily sequential/temporal
	- e.g., all dims of a vector
	- e.g., 2D, 3D, or high-dim arrays

In general, **autoregression** is a way of modeling **joint** distribution by a product of **conditional** distributions:

$$
p(x_1, x_2, ..., x_n) = p(x_1)p(x_2 | x_1)...p(x_n | x_1, x_2, ..., x_{n-1})
$$

=
$$
\prod_{i=1}^{n} p(x_i | x_1, x_2, ..., x_{i-1})
$$

Conceptually, ...

- *x* can be **any** order and **any** partition
	- order: e.g., reverse order is valid
	- partition: e.g., each of x_i can be a scalar, vector, or tensor

In general, **autoregression** is a way of modeling **joint** distribution by a product of **conditional** distributions:

$$
p(x_1, x_2, ..., x_n) = p(x_1)p(x_2 | x_1)...p(x_n | x_1, x_2, ..., x_{n-1})
$$

=
$$
\prod_{i=1}^{n} p(x_i | x_1, x_2, ..., x_{i-1})
$$

Conceptually, ...

- each $p(\cdot | \cdot)$ can take **any** form
	- e.g., look-up tables, trees, neural nets, or mix
	- e.g., discrete or continuous variables

In general, **autoregression** is a way of modeling **joint** distribution by a product of **conditional** distributions:

$$
p(x_1, x_2, ..., x_n) = p(x_1)p(x_2 | x_1)...p(x_n | x_1, x_2, ..., x_{n-1})
$$

=
$$
\prod_{i=1}^{n} p(x_i | x_1, x_2, ..., x_{i-1})
$$

This formulation makes **no** compromise/approximation

- This decomposition is always valid (just chain rule)
- But some are easier to model: "inductive bias" ...

Inductive Bias

(Recap) We want the decomposition to give us **simpler** distributions ...

 $p(A, B, C) = p(A)p(B | A)p(C | A, B)$ $p(A, B, C) = p(C)p(B | C)p(A | B, C)$ MM MM \backslash \wedge
Your phone's keyboard is Autoregressive:

Previous outputs can largely reduce the next plausible outputs.

the first thing i noticed was that the first thing that came to $rac{\bullet -}{\circ -}$ 田 <u>ේ</u> \bigcirc Aa mind my me W e p α O d a S g ♦ b \otimes Z X C n m 123 \bigcirc space return

We want the decomposition to give us **simpler** distributions ...

We want the decomposition to give us **simpler** distributions ...

Example: "next token prediction"

• Temporal modeling implies an inductive bias

We want the decomposed distributions to be represented by "**similar**" neural networks ...

$$
p(x_1, x_2, ..., x_n) = p(x_1)p(x_2 | x_1)...p(x_n | x_1, x_2, ..., x_{n-1})
$$

- Conceptually, these are different mappings
- But we model them by **shared architectures** (which can be RNN, CNN, Transformer, ...)

We want the decomposed distributions to be represented by "**similar**" neural networks ...

$$
p(x_1, x_2, ..., x_n) = p_{\theta}(x_1) p_{\theta}(x_2 \mid x_1) ... p_{\theta}(x_n \mid x_1, x_2, ..., x_{n-1})
$$

- Conceptually, these are different mappings
- But we model them by **shared architectures** (which can be RNN, CNN, Transformer, ...)
- and by **shared weights** θ

(Recap): The decomposition makes **no** compromise/approximation:

$$
p(x_1, x_2, ..., x_n) = p(x_1)p(x_2 | x_1)...p(x_n | x_1, x_2, ..., x_{n-1})
$$

But **inductive biases** introduce approximations:

- **shared** architectures, **shared** weights, ...
- with an induced decomposition

Representing One Distribution

$$
p_{\theta}(x_i \bigm| x_1, x_2, ..., x_{i-1})
$$

- Network inputs: $x_1, x_2, ..., x_{i-1}$
- Network output: a distribution of x_i
	- Continuous distribution $\bigwedge_{\mathcal{O}}$
	- Discrete distribution $\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2}$

Note:

- W/ a discrete distribution, this network behaves like classification (the "regression" part of autoregression)
- Discrete distribution is popular in AR models, but not a must

This figure implements this formulation:

$$
p(x_1, x_2, ..., x_n) =
$$

$$
\prod_{i=1}^n p(x_i \mid x_1, x_2, ..., x_{i-1})
$$

- This net models $p(x_2 | x_1)$
- 1 input
- 1 output

- This net models $p(x_3 | x_{1,2})$
- **2 inputs**
- 1 output
- inputs: outputs from previous steps

- This net models $p(x_4 | x_{1,2,3})$
- **3 inputs**
- 1 output
- inputs: outputs from previous steps

- This net models $p(x_5 | x_{1,2,3,4})$
- **4 inputs**
- 1 output
- inputs: outputs from previous steps

- This net models $p(x_6 | x_{1,2,3,4,5})$
- **5 inputs**
- 1 output
- inputs: outputs from previous steps

Note:

- This is a **recursive** process
- but **not** necessarily done by RNN
- can be done by **any** architecture (e.g., CNN or Transformers)

What if we backprop through this graph "as-is"?

Consider one gradient path of x_6 :

- go through all previous outputs, ...
- all previous sampling ops, ...
- all previous networks

(e.g., each is a full Transformer)

It's **infeasible** to **train** the AR model following its **inference** graph.

one gradient path

What if we backprop through this graph "as-is"?

Consider one gradient path of x_6 :

- go through all previous outputs, ...
- all previous sampling ops, ...
- all previous networks

(e.g., each is a full Transformer)

It's **infeasible** to **train** the AR model following its **inference** graph.

full gradients

Teacher-forcing

- Inputs are not from previous outputs
- Inputs are from ground-truth data

Teacher-forcing

- Inputs are not from previous outputs
- Inputs are from ground-truth data

Teacher-forcing

- Inputs are not from previous outputs
- Inputs are from ground-truth data

Pros:

• backprop path is much shorter

Teacher-forcing

- Inputs are not from previous outputs
- Inputs are from ground-truth data

Pros:

- backprop path is much shorter
- ground-truth inputs can ease training

Teacher-forcing

- Inputs are not from previous outputs
- Inputs are from ground-truth data

Pros:

- backprop path is much shorter
- ground-truth inputs can ease training

Cons:

- inconsistent training/inference
- distribution shift: can't see its own error

• an image as a sequence of pixels

- an image as a sequence of pixels
- scan by raster order

Inference: Autoregressive

• sample this pixel from $p(x_1)$

- sample this pixel from $p(x_2 | x_1)$
- this is output from previous step, input for current step
- network for this step:
	- 1 input
	- 1 predict

- sample this pixel from $p(x_n | x_{1,...,n-1})$
- these are outputs from previous steps, inputs for current step
- network for this step:
	- $(n 1)$ inputs
	- 1 predict

Training: Teacher-Forcing

- model this pixel by: $p(x_n | x_{1,...,n-1})$
- these are outputs from ground-truth, inputs for current step
- network for this step:
	- $(n 1)$ inputs
	- 1 predict

Note:

- This says nothing about architectures
- It's valid for: RNN, CNN, Transformer, ...

Autoregressive Models

Summary:

- Joint distribution ⇒ product of conditionals
- Inductive bias:
	- shared architecture, shared weight
	- induced order
- Inference: autoregressive
- Training: teacher-forcing

These are not specific to a certain type of network architectures.

Network Architectures for Autoregressive Modeling

Autoregression is not architecture-specific

This figure implements this formulation:

$$
p(x_1, x_2, ..., x_n) =
$$

$$
\prod_{i=1}^n p(x_i \mid x_1, x_2, ..., x_{i-1})
$$

(showing training case for simplicity)

Autoregression is not architecture-specific

This figure implements this formulation:

$$
p(x_1, x_2, ..., x_n) =
$$

$$
\prod_{i=1}^n p(x_i \mid x_1, x_2, ..., x_{i-1})
$$

In this example:

- 5 networks ...
- each has 1 to 5 inputs

Autoregression is not architecture-specific

This figure implements this formulation:

$$
p(x_1, x_2, ..., x_n) =
$$

$$
\prod_{i=1}^n p(x_i \mid x_1, x_2, ..., x_{i-1})
$$

Can we do this efficiently?

Autoregression w/ Shared Computation

This figure implements this formulation:

$$
p(x_1, x_2, ..., x_n) =
$$

$$
\prod_{i=1}^n p(x_i \mid x_1, x_2, ..., x_{i-1})
$$

Autoregression w/ Shared Computation

This figure implements this formulation:

$$
p(x_1, x_2, ..., x_n) =
$$

$$
\prod_{i=1}^n p(x_i \mid x_1, x_2, ..., x_{i-1})
$$

(this figure is equivalent to previous one)

Autoregression w/ Shared Computation

This figure implements this formulation:

$$
p(x_1, x_2, ..., x_n) =
$$

$$
\prod_{i=1}^n p(x_i \mid x_1, x_2, ..., x_{i-1})
$$

Autoregression w/ Shared Computation

We can implement:

$$
p(x_1, x_2, ..., x_n) =
$$

$$
\prod_{i=1}^n p(x_i \mid x_1, x_2, ..., x_{i-1})
$$

- ... by one network, with:
- shared architecture
- shared weights
- shared **computation**

if:

• output x_i not depend on x_j for any $j \geq i$

Autoregression w/ Shared Computation

We can implement:

$$
p(x_1, x_2, ..., x_n) =
$$

$$
\prod_{i=1}^n p(x_i \mid x_1, x_2, ..., x_{i-1})
$$

- ... by one network, with:
- shared architecture
- shared weights
- shared **computation**

if:

• output x_i not depend on x_j for any $j \geq i$

targets: shifted by one step

Common Architectures for Autoregression

See also my lecture at 6.8300: "11: Sequence Modeling": https://drive.google.com/file/d/1lOYsyImXl3caWlsplfThyuvgz-8Vn7yR/view?usp=sharing

one RNN unit

unfold in "time"

go deep

Example: Char-RNN

Andrej Karpathy. "The Unreasonable Effectiveness of Recurrent Neural Networks", blog post, 2015

"time" axis

go deep

"time" axis

Example: WaveNet

Audio generation with 1-D dilated causal conv

van den Oord, et al. "WaveNet: A Generative Model for Raw Audio", 2016

full attention (every step sees all steps)

causal attention (not depend on "future")

go deep

Example: image GPT (iGPT)

This figure is adapted from the original paper.

Chen, et al. "Generative Pretraining from Pixels", ICML 2020

Summary: Network Architectures for AR

See also my lecture at 6.8300: "11: Sequence Modeling": https://drive.google.com/file/d/1lOYsyImXl3caWlsplfThyuvgz-8Vn7yR/view?usp=sharing

Summary: Autoregressive Models

Takeaways:

- Joint distribution \Rightarrow product of conditionals
- Inductive bias:
	- shared architecture, shared weight
	- induced order
- Inference: autoregressive
- Training: teacher-forcing
- Can be done by RNN, CNN, and Transformers
This Lecture

• Conditional Distribution Modeling

• Autoregressive Models

• Network Architectures for Autoregressive Modeling

Main References

- Bengio and Bengio. "Modeling High-Dimensional Discrete Data with Multi-Layer Neural Networks", NeurIPS 1999
- van den Oord, et al. "Pixel Recurrent Neural Networks", ICML 2016
- Radford, et al. "Improving Language Understanding by Generative Pre-Training", 2018