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Overview

* Conditional Distribution Modeling
* Autoregressive Models

* Network Architectures for Autoregressive Modeling



Conditional Distribution Modeling



Joint Distribution

It’s convenient to model joint distributions by independent distributions

p($1, T9)=p(x1)p(xs)

conditional = marginal

p(wo|z1)=p(zs)




Joint Distribution

Real-word problems always involve dependent variables

p(%, )

conditional # marginal
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Joint Distribution

Real-word problems always involve dependent variables

p($1, )

conditional # marginal

p(xy|Ty)




How to Model Joint Distributions?

Solution 1: Modeling by independent latents (e.g., VAE)

mapping: independent = dependent
strict assumption for high-dim data (e.g., 32x32x3 pixels)

A

independent dependent

often with low-dim latents
a good building block, but often not sufficient

A




VAE results on 784-d MINIST data
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(b) 5-D latent space (¢) 10-D latent space (d) 20-D latent space

(a) 2-D latent space



How to Model Joint Distributions?

Solution 1: Modeling by independent latents

Solution 2: Modeling by conditional distributions



Conditional Distribution Modeling

Chain rule:

Any joint distribution can be written as a product of conditionals
p(A, B) = p(A)p(B | A)
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Conditional Distribution Modeling

Chain rule:

Any joint distribution can be written as a product of conditionals
p(4, B, C) = p(A)p(B | A)p(C | A, B)

p(B=dark | car)

p(B=light | car)

p(B=dark | bus)

p(B=light | bus)



Conditional Distribution Modeling

Chain rule:

Any joint distribution can be written as a product of conditionals
p(4, B, C) = p(A)p(B | A)p(C | A, B)

‘ ‘ p(C=new | dark car)

‘ p(B=dark | car) ‘ p(C=old | dark car)

p(A=car) ‘ ‘ p(C=new | light car)

‘ p(B=light | car) ‘ p(C=old | light car)
. ’ p(C=new | dark bus)

‘ p(B=dark | bus) ‘ p(C=old | dark bus)
p(A=bus) ‘ . p(C=new | light bus)

p(B=light | bus) . p(C=old | light bus)



Conditional Distribution Modeling

Chain rule:
Any joint distribution can be written as a product of conditionals

in any order: p(A, B, C) = p(A)p(B | A)p(C' | A, B)




Conditional Distribution Modeling

Chain rule:
Any joint distribution can be written as a product of conditionals
in any partition: p(A, B, C, D) = p(A, B)p(C, D | A, B)

= p(C, D)p(A, B | C, D)
p(A, B, C)p(D | A, B, C)




Case Study: Conditional Distribution Modeling

Case 1: Partitioning the input representation space x

p(z1, T2, ..., Tn) = p(z1)p(z2 | Z1)...0(Tn | 1, T2, ..., Tn—1)



Case Study: Conditional Distribution Modeling

Case 2: Partitioning the latent representation space z




Case Study: Conditional Distribution Modeling

Case 3: Progressively transforming data distributions

|X2 X0|X1




Conditional Distribution Modeling

’

Same spirit as Deep Learning: “Divide-and-Conquer’

e Chain rule of derivatives (backprop):

o0& o0& 8$3 83?2

8—$1 - 85133 8:1:2 85171

e Chain rule of probability:

p($1,$2,$3) — p(ﬂil)p(@ \ ml)p(xzs | $1,$2)



Conditional Distribution Modeling

Modeling each conditional distribution with a neural network
p(A, B, C) = py(A)py(B | A)py(C | A, B)



Conditional Distribution Modeling

Modeling each conditional distribution with a neural network
p(A, B, C) = py(A)py(B | A)py(C | A, B)

py(B=dark | car)

py( A=car)

pys(B=light | car)

py(B=dark | bus)

ps(A=bus)

pys(B=light | bus)

‘ py(C=new | dark car)
. py(C=old | dark car)

‘ py(C=new | light car)
’ py(C=old | light car)

’ py(C=new | dark bus)
‘ py(C=old | dark bus)

. py(C=new | light bus)
. py(C=old | light bus)



Conditional Distribution Modeling

Modeling each conditional distribution with a neural network
p(A, B, C) = py(A)py(B | A)py(C | A, B)

Note:
* parameterizing p(A, B, C) vs. parameterizing p(C | A, B)?
* p(A, B, C) has 3 variables
« p(C| A, B) has 1variable and 2 conditions (conditions are network inputs)

* weight sharing?
* conceptually, each p has its own weights
* weight sharing implies inductive biases



Dependency Graphs

 Decompose a joint distribution = induce a dependency graph
 Dependency graphs reflect prior knowledge

p(A, B, C) = p(A)p(B | A)p(C | A, B)

g



Dependency Graphs

* Some dependency graphs may induce simpler distributions ...

p(A, B, C) = p(A)p(B | A)p(C | A, B) p(A, B, C) = p(C)p(B | C)p(A | B, C)

Both are valid formulations. But one may be simpler to learn than the other.



Dependency Graphs

* Some dependency graphs may induce simpler distributions ...




Conditional Distribution Modeling

Summary:

e Joint distribution = product of conditionals
* Chain rule: divide-and-conquer

 Any order, any partition

 Dependency graphs: induce prior knowledge

These are not specific to Autoregressive models.



Autoregressive Models



ChatGPT: Next Token Prediction

What are generative models?

& Generative models are a class of machine learning models designed to generate
new data samples that resemble a given dataset. They aim to learn the

underlying distributio @

@ Message ChatGPT




the first thing i noticed
Your Keyboa rd was that the first thing

that came to




Auto + Regression

Auto: “self”

e using its “own” outputs as inputs for next perditions

Regression:

* estimating relationship between variables

Note:

 “Autoregressive” implies an inference-time behavior

* Training-time is not necessarily autoregressive (e.g., teacher forcing)



Autoregressive Models

In general, autoregression is a way of modeling joint distribution by a
product of conditional distributions:

p(z1,T2, .., 2n) = p(x1)p(z2 | 21)...p(T0 | 1, T2, ..., Tr—1)
n
— Hp(xz | x17x27°"7x’£—1)
i=1

Conceptually, ...
 x can be any representation
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Autoregressive Models

In general, autoregression is a way of modeling joint distribution by a
product of conditional distributions:

p(z1,T2, .., 2n) = p(x1)p(z2 | 21)...p(T0 | 1, T2, ..., Tr—1)
n
— Hp(xz | x17x27°"7x’£—1)
i=1

Conceptually, ...

« each p(- | ) can take any form



Autoregressive Models

In general, autoregression is a way of modeling joint distribution by a
product of conditional distributions:

p(z1,T2, .., 2n) = p(x1)p(z2 | 21)...p(T0 | 1, T2, ..., Tr—1)
n

— Hp(xz | x17x27°"7x’£—1)

1=1

This formulation makes no compromise/approximation
* This decomposition is always valid (just chain rule)

e But some are easier to model: “inductive bias” ...



Inductive Bias

(Recap) We want the decomposition to give us simpler distributions ...

p(A, B, C) = p(A)p(B | A)p(C | A, B) p(A, B, C) = p(C)p(B | C)p(A | B, C)



the first thing i noticed
was that the first thing
that came to

Your phone’s keyboard is Autoregressive:

Previous outputs can largely reduce the next
plausible outputs.




Inductive Bias

We want the decomposition to give us simpler distributions ...

“harder”

11

p(21)

p(x5|Ty)

QQTQQ

“simpler” ¢

)

Example: every p is a categorical disttribution

oo

p(xs‘z’fl,z)

p($4|$1,2,3) I

P52z 55 4)



Inductive Bias

We want the decomposition to give us simpler distributions ...

Example: “next token prediction”
 Temporal modeling implies an inductive bias



Inductive Bias

We want the decomposed distributions to be represented by
“similar” neural networks ...

p(r1,T2,..,2n) = p(x1)p(z2 | 21)...p(T0 | 71,72, Tr—1)

* Conceptually, these are different mappings
* But we model them by shared architectures



Inductive Bias

We want the decomposed distributions to be represented by
“similar” neural networks ...

p(x1, T2, .00y Tyn) = p@(xl)p@(xg | a:l)pg(xn | 21,22, ey Tr_1)

* Conceptually, these are different mappings
* But we model them by shared architectures

* and by shared weights 0



Inductive Bias

(Recap): The decomposition makes no compromise/approximation:

p(r1,T2,..,2n) = p(x1)p(z2 | 21)...p(T0 | 71,72, Tr—1)

But inductive biases introduce approximations:
* shared architectures, shared weights, ...

* with an induced decomposition



Representing One Distribution

p@(xi ‘ L1y L2y «eny CEi—l)

* Network L L1, T2, ., Ti1

e Network . a distribution of x;

* Continuous distribution /\M\

e Discrete distribution T T
Q01090 [99

Note:
W/ a discrete distribution, this network behaves like classification

* Discrete distribution is popular in AR models, but not a must



Inference: Autoregressive

This figure implements this formulation:

p(CUl, L2y eeny xn) —

H?:1 p(xi | L1,T2, ---,907;—1)

L2

ki

\




* 1input
* 1 output

Inference: Autoregressive

L2

* This net models p(z | z;) %




Inference: Autoregressive

* This net models p(x3 | z; 5)

* 2 inputs
* 1 output

* inputs: outputs from previous steps

L2

$\




Inference: Autoregressive

* This net models p(5134 \ 371,2,3)

* 3inputs
* 1 output

* inputs: outputs from previous steps

$\

L1

i

¢\




Inference: Autoregressive

* This net models p(z; | x1,2,3,4)

* 4 inputs
* 1 output

* inputs: outputs from previous steps

$\




Inference: Autoregressive

 This net models p(:li‘6 \ £U1,2,3,4,5)

* 5inputs
* 1 output

* inputs: outputs from previous steps

¢




Inference: Autoregressive

Note: D

* This is a recursive process @

* but not necessarily done by RNN

* can be done by any architecture
(e.g., CNN or Transformers)

\




What if we backprop through this graph “as-is”?

Consider of x: T

6
* go through all previous outputs, ... O O O O O

 all previous sampling ops, ...
 all previous networks

It’s infeasible to train the AR model
following its inference graph.



What if we backprop through this graph “as-is”?

Consider of x: T

6
* go through all previous outputs, ... O O O O O

 all previous sampling ops, ...
 all previous networks

It’s infeasible to train the AR model
following its inference graph.



Training: Teacher-Forcing

Teacher-forcing
* Inputs are not from previous outputs
* |nputs are from ground-truth data

L2

ki

\




Training: Teacher-Forcing

Teacher-forcing To 3 T4 Ts T

* Inputs are not from previous outputs
* |nputs are from ground-truth data

ground-truth as inputs



Training: Teacher-Forcing

Teacher-forcing

* Inputs are not from previous outputs

* |nputs are from ground-truth data

Pros:

* backprop path is much shorter

o O O O O

| )

— |/

| )

— |/

| )

— |/

| )

— |/

| )

— |/



Training: Teacher-Forcing

Teacher-forcing To T3 T4 T Tg
* Inputs are not from previous outputs

* |nputs are from ground-truth data

Pros:

* backprop path is much shorter

e ground-truth inputs can ease training

ground-truth as inputs



Training: Teacher-Forcing

Teacher-forcing To T3 T4 T Tg
* Inputs are not from previous outputs

* |nputs are from ground-truth data

Pros:

* backprop path is much shorter

e ground-truth inputs can ease training

Cons:
* inconsistent training/inference T To T3 T4 T
* distribution shift: can’t see its own error

ground-truth as inputs



Running example:
AR on MNIST

* animage as a sequence of pixels




Running example:
AR on MNIST

* animage as a sequence of pixels

e scan by




Running example:
AR on MNIST

Inference: Autoregressive

« sample this pixel from p(x;)




Running example:
AR on MNIST

Inference: Autoregressive

« sample this pixel from p(xy | ;)

* thisis output from previous step,
input for current step

* network for this step:
* 1input
e 1 predict




Running example:
AR on MNIST

* sample this pixel from p(xn ] xl,...,n—l) R — = p(a:n ‘ 51317._.771_1)

Inference: Autoregressive

are outputs from previous steps,
inputs for current step

* network for this step:
* (n-1)
1 predict



Running example:
AR on MNIST

Training: Teacher-Forcing
* model this pixel by: p(z,, | 5617”_7,,7}_1)

* these are outputs from ground-truth,
inputs for current step

* network for this step:
* (n-1)inputs
* 1 predict




Running example:
AR on MNIST

Note:
* This says nothing about architectures

e It’s valid for:
RNN, CNN, Transformer, ...




Autoregressive Models

Summary:
e Joint distribution = product of conditionals

* Inductive bias:
* shared architecture, shared weight
* induced order

* Inference: autoregressive

* Training: teacher-forcing

These are not specific to a certain type of network architectures.



Network Architectures
for Autoregressive Modeling



Autoregression is not architecture-specific

This figure implements this formulation: D T3 T4 x5 T6

P A A A 1
H?;l p(x; | x1,%2,...,Ti—1)




Autoregression is not architecture-specific

This figure implements this formulation: To T3 T4 T Ze
p(ml’x27'..’xn) ) i i i i i
n
Hi:1 p(xi | L1, L2, ---,907;—1)

In this example:
* 5networks ...

e eachhas1lto5 1 7 A 7|_’ %\WI_’%WAD
L1 L2 T3 T4 s




Autoregression is not architecture-specific

This figure implements this formulation: To T3 T4 T Ze
p(xl’xz,'..,xn) ) i i i i i
n
Hi:1 p(i’?i | L1, L2, ---,337;—1)

Can we do this efficiently?




Autoregression w/ Shared Computation

This figure implements this formulation: D T3 T4 x5 T6

P A A A 1
H?:l p(x; | 1,22, ., Ti1)




Autoregression w/ Shared Computation

This figure implements this formulation: To T3 T4 T Ze
G S S S Y
n
Hi:1 p(xz- | L1, L2, ---,907;—1)
— —
L1 L2 T3 T4 s

(this figure is equivalent to previous one)



Autoregression w/ Shared Computation

This figure implements this formulation: D T3 T4 x5

p(iBl, L2y ey xn) —

H?:l p(:cz- | L1y L2y eey Cl?z'—1)

S S S



Autoregression w/ Shared Computation

We can implement:

p(xla L2y ey CEn) —

H?:1 p(x; | 1,22, ., Ti1)

... by one network, with:

if:

shared architecture
shared weights
shared computation

output x; not depend on z; for any j>i




Autoregression w/ Shared Computation

We can implement:

p(xla L2y ey CEn) —

H?:1 p(x; | 1,22, ., Ti1)

... by one network, with:

if:

shared architecture
shared weights
shared computation

output x; not depend on z; for any j>i




Common Architectures for Autoregression

RNN CNN Attention



Brief: Recurrent Neural Network (RNN) for AR

one RNN unit



Brief: Recurrent Neural Network (RNN) for AR

unfold in “time”



Brief: Recurrent Neural Network (RNN) for AR

go deep



Brief: Recurrent Neural Network (RNN) for AR

: L2 L3 L4 Is
shift target by one step



Brief: Recurrent Neural Network (RNN) for AR

Lo X3

0 QO Q



Brief: Recurrent Neural Network (RNN) for AR
L2 X3 X4 Ts
p(wy | 1) ﬁ Q Q Q

|




Brief: Recurrent Neural Network (RNN) for AR
3 )

p(zs | 22) Q/ @ JQ Q
/ |




Brief: Recurrent Neural Network (RNN) for AR

etony @ QO




Brief: Recurrent Neural Network (RNN) for AR

L9 I3 @ XI5
p(xs | %,2,3,4) Q Q ! Q




Example: Char-RNN

target chars: “e” o “” ‘0’
1.0 0.5 0.1 0.2
2.2 0.3 05 -1.5
tput
outputlayer (eSS 1.0 1.9 -0.1
4.1 1.2 -1.1 2.2
T T T Wy
0.3 1.0 g (B
hidden layer | .0.1 > 0.3 > -05——= 0.9
0.9 01 -0.3 0.7
T T T W
1 0 0 0
: 0 1 0 0
input layer 0 0 1 1
0 0 0 0

input chars: “h” ¥

m\a



Brief: Convolutional Neural Network (CNN) for AR

1-D convolution @ @

>

“time” axis



Brief: Convolutional Neural Network (CNN) for AR

>

“time” axis



Brief: Convolutional Neural Network (CNN) for AR

causal convolution

(not depend on “future”)

“time” axis



Brief: Convolutional Neural Network (CNN) for AR

go deep

“time” axis



Brief: Convolutional Neural Network (CNN) for AR

hift target b tep -2 B T4 5
shift target by one step OO0 0O O
O O O O

997



Brief: Convolutional Neural Network (CNN) for AR

Lo X3

0 QO Q



Brief: Convolutional Neural Network (CNN) for AR
L2 X3 X4 Ts
p(wy | 1) ﬁ Q Q Q




Brief: Convolutional Neural Network (CNN) for AR
3 )

p(as | 21) Q/ @ JQ Q
/ |




Brief: Convolutional Neural Network (CNN) for AR

etony @ QO




Brief: Convolutional Neural Network (CNN) for AR

L9 I3 ?yzl XI5
p(xs | %,2,3,4) Q Q ! Q

i




Example: WaveNet

.0 0 06 0 O




Brief: Attention (Transformer) for AR

full attention

(every step sees all steps)




Brief: Attention (Transformer) for AR

causal attention

(not depend on “future”)



Brief: Attention (Transformer) for AR

go deep



Brief: Attention (Transformer) for AR



Brief: Attention (Transformer) for AR




Brief: Attention (Transformer) for AR

p(xy | 1)




Brief: Attention (Transformer) for AR
T3 )

L2

P(333 | 551,2)




Brief: Attention (Transformer) for AR

L2 X3 Ty \ Ts

p(le | 5’31,2,3)




Brief: Attention (Transformer) for AR

L9 I3 L4 XI5
p(xs | 331,2,3,4) g g Q




Example: image GPT (iGPT)

HE B

331 ? xn

000000000
_4___4

000000000
.M
o0 00000

A
XN E
L L

-1

Chen, et al. “Generative Pretraining from Pixels”, ICML 2020



Summary: Network Architectures for AR

RNN CNN Attention



Summary: Autoregressive Models

Takeaways:
e Joint distribution = product of conditionals

* |Inductive bias:
* shared architecture, shared weight
* induced order

* Inference: autoregressive

* Training: teacher-forcing

e Can be done by RNN, CNN, and Transformers



This Lecture

* Conditional Distribution Modeling
* Autoregressive Models

* Network Architectures for Autoregressive Modeling
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