
6.S978 Deep Generative Models

Kaiming He
Fall 2024, EECS, MIT

Lecture 3

Autoregressive Models

Overview
• Conditional Distribution Modeling

• Autoregressive Models

• Network Architectures for Autoregressive Modeling

Conditional Distribution Modeling

Joint Distribution
It’s convenient to model joint distributions by independent distributions

p(x1, x2)=p(x1)p(x2)

x2

p(x2|x1)=p(x2)

conditional ＝ marginal

x1

Joint Distribution
Real-word problems always involve dependent variables

x2

conditional ≠ marginal

p(x1, x2)

p(x2|x1)

x1

Joint Distribution
Real-word problems always involve dependent variables

x2x1

conditional ≠ marginal

p(x1, x2)

p(x2|x1)

independent dependent

How to Model Joint Distributions?
Solution 1: Modeling by independent latents (e.g., VAE)
• mapping: independent ⇒ dependent
• strict assumption for high-dim data (e.g., 32x32x3 pixels)
• often with low-dim latents
• a good building block, but often not sufficient

Figure from: Kingma and Welling. “Auto-Encoding Variational Bayes”, ICLR 2014

VAE results on 784-d MNIST data

Too strict to model the 784-d (28x28) joint distribution by
independent distributions

How to Model Joint Distributions?
Solution 1: Modeling by independent latents

Solution 2: Modeling by conditional distributions

Conditional Distribution Modeling
Chain rule:
Any joint distribution can be written as a product of conditionals

p(A, B) = p(A)p(B | A)

Conditional Distribution Modeling
Chain rule:
Any joint distribution can be written as a product of conditionals

p(A, B, C) = p(A)p(B | A)p(C | A, B)

Conditional Distribution Modeling
Chain rule:
Any joint distribution can be written as a product of conditionals

p(A=car)

p(A=bus)

p(A, B, C) = p(A)p(B | A)p(C | A, B)

*example: binary variables

Conditional Distribution Modeling
Chain rule:
Any joint distribution can be written as a product of conditionals

p(B=dark | car)

p(B=light | car)

p(B=light | bus)

p(B=dark | bus)

p(A=car)

p(A=bus)

p(A, B, C) = p(A)p(B | A)p(C | A, B)

*example: binary variables

p(A, B, C) = p(A)p(B | A)p(C | A, B)

Conditional Distribution Modeling
Chain rule:
Any joint distribution can be written as a product of conditionals

p(B=dark | car)

p(B=light | car)

p(B=light | bus)

p(B=dark | bus)

p(A=car)

p(A=bus)

p(C=new | dark car)

p(C=old | dark car)

p(C=old | light bus)

p(C=new | light car)

p(C=old | light car)

p(C=new | dark bus)

p(C=old | dark bus)

p(C=new | light bus)

*example: binary variables

Conditional Distribution Modeling
Chain rule:
Any joint distribution can be written as a product of conditionals
in any order: p(A, B, C) = p(A)p(B | A)p(C | A, B)

p(A, B, C) = p(A)p(C | A)p(B | A, C)
p(A, B, C) = p(B)p(A | B)p(C | A, B)
p(A, B, C) = p(B)p(C | B)p(A | B, C)
p(A, B, C) = p(C)p(A | C)p(B | A, C)
p(A, B, C) = p(C)p(B | C)p(A | B, C)

* This is a foundation of Masked Autoregressive (MAR) models:
Li, et al. Autoregressive Image Generation without Vector Quantization, 2024

Conditional Distribution Modeling
Chain rule:
Any joint distribution can be written as a product of conditionals
in any partition: p(A, B, C, D) = p(A, B)p(C, D | A, B)

p(A, B, C, D) = p(C, D)p(A, B | C, D)
p(A, B, C, D) = p(A, B, C)p(D | A, B, C)
p(A, B, C, D) = ... p(B, C)p(A, D | B, C)

* This is a foundation of Masked Autoregressive (MAR) models:
Li, et al. Autoregressive Image Generation without Vector Quantization, 2024

Case Study: Conditional Distribution Modeling
Case 1: Partitioning the input representation space x

Example: Autoregressive Models on text tokens or pixels

Case Study: Conditional Distribution Modeling
Case 2: Partitioning the latent representation space z

Example: Autoregressive Models on VQ-VAE tokens

Case Study: Conditional Distribution Modeling
Case 3: Progressively transforming data distributions

Example: Diffusion Models

Conditional Distribution Modeling
Same spirit as Deep Learning: “Divide-and-Conquer”

• Chain rule of derivatives (backprop):

• Chain rule of probability:

Conditional Distribution Modeling
Modeling each conditional distribution with a neural network

p(A, B, C) = pθ(A)pφ(B | A)p𝜓(C | A, B)

Conditional Distribution Modeling
Modeling each conditional distribution with a neural network

p(A, B, C) = pθ(A)pφ(B | A)p𝜓(C | A, B)

pφ(B=dark | car)

pφ(B=light | car)

pφ(B=light | bus)

pφ(B=dark | bus)

pθ(A=car)

pθ(A=bus)

p𝜓(C=new | dark car)

p𝜓(C=old | dark car)

p𝜓(C=old | light bus)

p𝜓(C=new | light car)

p𝜓(C=old | light car)

p𝜓(C=new | dark bus)

p𝜓(C=old | dark bus)

p𝜓(C=new | light bus)

Conditional Distribution Modeling
Modeling each conditional distribution with a neural network

Note:
• parameterizing p(A, B, C) vs. parameterizing p(C | A, B)?
• p(A, B, C) has 3 variables |
• p(C | A, B) has 1 variable and 2 conditions (conditions are network inputs)

• weight sharing?
• conceptually, each p has its own weights
• weight sharing implies inductive biases (discussed later)

p(A, B, C) = pθ(A)pφ(B | A)p𝜓(C | A, B)

Dependency Graphs
• Decompose a joint distribution ⇒ induce a dependency graph
• Dependency graphs reflect prior knowledge

p(A, B, C) = p(A)p(B | A)p(C | A, B)

Dependency Graphs
• Some dependency graphs may induce simpler distributions ...

p(A, B, C) = p(C)p(B | C)p(A | B, C)

Both are valid formulations. But one may be simpler to learn than the other.

p(A, B, C) = p(A)p(B | A)p(C | A, B)

Dependency Graphs
• Some dependency graphs may induce simpler distributions ...

E.g., see: Hua, et al. “Self-supervision through Random Segments with Autoregressive Coding (RandSAC)”, ICLR 2022

Conditional Distribution Modeling
Summary:
• Joint distribution ⇒ product of conditionals
• Chain rule: divide-and-conquer
• Any order, any partition
• Dependency graphs: induce prior knowledge

These are not specific to Autoregressive models.

Autoregressive Models

ChatGPT: Next Token Prediction

Your Keyboard

Auto + Regression
Auto: “self”
• using its “own” outputs as inputs for next perditions
Regression:
• estimating relationship between variables

Note:
• “Autoregressive” implies an inference-time behavior
• Training-time is not necessarily autoregressive (e.g., teacher forcing)

Autoregressive Models
In general, autoregression is a way of modeling joint distribution by a
product of conditional distributions:

Conceptually, ...
• x can be any representation
• not necessarily sequential/temporal
• e.g., all dims of a vector
• e.g., 2D, 3D, or high-dim arrays

Autoregressive Models
In general, autoregression is a way of modeling joint distribution by a
product of conditional distributions:

Conceptually, ...
• x can be any order and any partition
• order: e.g., reverse order is valid
• partition: e.g., each of xi can be a scalar, vector, or tensor

In general, autoregression is a way of modeling joint distribution by a
product of conditional distributions:

Conceptually, ...
• each can take any form
• e.g., look-up tables, trees, neural nets, or mix
• e.g., discrete or continuous variables

Autoregressive Models

In general, autoregression is a way of modeling joint distribution by a
product of conditional distributions:

This formulation makes no compromise/approximation
• This decomposition is always valid (just chain rule)
• But some are easier to model: “inductive bias” ...

Autoregressive Models

Inductive Bias
(Recap) We want the decomposition to give us simpler distributions ...

p(A, B, C) = p(A)p(B | A)p(C | A, B) p(A, B, C) = p(C)p(B | C)p(A | B, C)

Your phone’s keyboard is Autoregressive:

Previous outputs can largely reduce the next
plausible outputs.

Inductive Bias
We want the decomposition to give us simpler distributions ...

Illustration adapted from AlphaGo

p(x2|x1)

p(x1)
p(x3|x1,2)

p(x4|x1,2,3)

p(x5|x1,2,3,4)

Example: every p is a categorical distribution

“simpler”

“harder”

Inductive Bias
We want the decomposition to give us simpler distributions ...

Example: “next token prediction”
• Temporal modeling implies an inductive bias

t: time axis

Inductive Bias
We want the decomposed distributions to be represented by
“similar” neural networks ...

• Conceptually, these are different mappings
• But we model them by shared architectures

(which can be RNN, CNN, Transformer, ...)

Inductive Bias
We want the decomposed distributions to be represented by
“similar” neural networks ...

• Conceptually, these are different mappings
• But we model them by shared architectures

(which can be RNN, CNN, Transformer, ...)
• and by shared weights θ

θ θ θ

(Recap): The decomposition makes no compromise/approximation:

But inductive biases introduce approximations:
• shared architectures, shared weights, ...
• with an induced decomposition

Inductive Bias

Representing One Distribution

• Network inputs:
• Network output: a distribution of

• Continuous distribution

• Discrete distribution

Note:
• W/ a discrete distribution, this network behaves like classification

 (the “regression” part of autoregression)
• Discrete distribution is popular in AR models, but not a must

Inference: Autoregressive
This figure implements this formulation:

Inference: Autoregressive

• This net models p(x2 | x1)

• 1 input
• 1 output

Inference: Autoregressive

• This net models p(x3 | x1,2)

• 2 inputs
• 1 output

• inputs: outputs from previous steps

Inference: Autoregressive

• This net models p(x4 | x1,2,3)

• 3 inputs
• 1 output

• inputs: outputs from previous steps

Inference: Autoregressive

• This net models p(x5 | x1,2,3,4)

• 4 inputs
• 1 output

• inputs: outputs from previous steps

Inference: Autoregressive

• This net models p(x6 | x1,2,3,4,5)

• 5 inputs
• 1 output

• inputs: outputs from previous steps

Inference: Autoregressive
Note:
• This is a recursive process

• but not necessarily done by RNN
• can be done by any architecture

(e.g., CNN or Transformers)

Consider one gradient path of x6:
• go through all previous outputs, ...
• all previous sampling ops, ...
• all previous networks
(e.g., each is a full Transformer)

It’s infeasible to train the AR model
following its inference graph.

What if we backprop through this graph “as-is”?

one gradient path

Consider one gradient path of x6:
• go through all previous outputs, ...
• all previous sampling ops, ...
• all previous networks
(e.g., each is a full Transformer)

It’s infeasible to train the AR model
following its inference graph.

What if we backprop through this graph “as-is”?

full gradients

Teacher-forcing
• Inputs are not from previous outputs
• Inputs are from ground-truth data

Training: Teacher-Forcing

Teacher-forcing
• Inputs are not from previous outputs
• Inputs are from ground-truth data

Training: Teacher-Forcing

ground-truth as inputs

Teacher-forcing
• Inputs are not from previous outputs
• Inputs are from ground-truth data

Pros:
• backprop path is much shorter

Training: Teacher-Forcing

Note: each path is a full deep network

Teacher-forcing
• Inputs are not from previous outputs
• Inputs are from ground-truth data

Pros:
• backprop path is much shorter
• ground-truth inputs can ease training

Training: Teacher-Forcing

ground-truth as inputs

Teacher-forcing
• Inputs are not from previous outputs
• Inputs are from ground-truth data

Pros:
• backprop path is much shorter
• ground-truth inputs can ease training

Cons:
• inconsistent training/inference
• distribution shift: can’t see its own error

Training: Teacher-Forcing

ground-truth as inputs

Running example:
AR on MNIST
• an image as a sequence of pixels

• an image as a sequence of pixels
• scan by raster order

Running example:
AR on MNIST

Inference: Autoregressive
• sample this pixel from

Running example:
AR on MNIST

p(x1)

p(x1)

Inference: Autoregressive
• sample this pixel from

• this is output from previous step,
input for current step

• network for this step:
• 1 input
• 1 predict

Running example:
AR on MNIST

p(x2 | x1)

p(x2 | x1)

Inference: Autoregressive
• sample this pixel from

• these are outputs from previous steps,
inputs for current step

• network for this step:
• (n - 1) inputs
• 1 predict

Running example:
AR on MNIST

p(xn | x1,...,n-1)p(xn | x1,...,n-1)

Training: Teacher-Forcing
• model this pixel by:

• these are outputs from ground-truth,
inputs for current step

• network for this step:
• (n - 1) inputs
• 1 predict

Running example:
AR on MNIST

p(xn | x1,...,n-1)

Note:
• This says nothing about architectures
• It’s valid for:

RNN, CNN, Transformer, ...

Running example:
AR on MNIST

Autoregressive Models
Summary:
• Joint distribution ⇒ product of conditionals
• Inductive bias:
• shared architecture, shared weight
• induced order

• Inference: autoregressive
• Training: teacher-forcing

These are not specific to a certain type of network architectures.

Network Architectures
for Autoregressive Modeling

This figure implements this formulation:

Autoregression is not architecture-specific

(showing training case for simplicity)

This figure implements this formulation:

Autoregression is not architecture-specific

In this example:
• 5 networks ...
• each has 1 to 5 inputs

This figure implements this formulation:

Autoregression is not architecture-specific

Can we do this efficiently?

Autoregression w/ Shared Computation
This figure implements this formulation:

Autoregression w/ Shared Computation
This figure implements this formulation:

(this figure is equivalent to previous one)

Autoregression w/ Shared Computation
This figure implements this formulation:

Autoregression w/ Shared Computation
We can implement:

... by one network, with:
• shared architecture
• shared weights
• shared computation

if:
• output xi not depend on xj for any j≥i

Autoregression w/ Shared Computation
We can implement:

... by one network, with:
• shared architecture
• shared weights
• shared computation

if:
• output xi not depend on xj for any j≥i

targets: shifted by one step

Common Architectures for Autoregression

See also my lecture at 6.8300: “11: Sequence Modeling”: https://drive.google.com/file/d/1lOYsyImXl3caWlsplfThyuvgz-8Vn7yR/view?usp=sharing

CNNRNN Attention

Brief: Recurrent Neural Network (RNN) for AR

one RNN unit

Brief: Recurrent Neural Network (RNN) for AR

unfold in “time”

Brief: Recurrent Neural Network (RNN) for AR

go deep

Brief: Recurrent Neural Network (RNN) for AR
shift target by one step

Brief: Recurrent Neural Network (RNN) for AR

Brief: Recurrent Neural Network (RNN) for AR

p(x2 | x1)

Brief: Recurrent Neural Network (RNN) for AR

p(x3 | x1,2)

Brief: Recurrent Neural Network (RNN) for AR

p(x4 | x1,2,3)

Brief: Recurrent Neural Network (RNN) for AR

p(x5 | x1,2,3,4)

Example: Char-RNN

Andrej Karpathy. “The Unreasonable Effectiveness of Recurrent Neural Networks”, blog post, 2015

Brief: Convolutional Neural Network (CNN) for AR

1-D convolution

“time” axis

Brief: Convolutional Neural Network (CNN) for AR

w/ padding

“time” axis

Brief: Convolutional Neural Network (CNN) for AR

causal convolution
(not depend on “future”)

“time” axis

Brief: Convolutional Neural Network (CNN) for AR

“time” axis

go deep

Brief: Convolutional Neural Network (CNN) for AR
shift target by one step

Brief: Convolutional Neural Network (CNN) for AR

Brief: Convolutional Neural Network (CNN) for AR

p(x2 | x1)

Brief: Convolutional Neural Network (CNN) for AR

p(x3 | x1,2)

Brief: Convolutional Neural Network (CNN) for AR

p(x4 | x1,2,3)

Brief: Convolutional Neural Network (CNN) for AR

p(x5 | x1,2,3,4)

Example: WaveNet

van den Oord, et al. “WaveNet: A Generative Model for Raw Audio”, 2016

Audio generation with 1-D dilated causal conv

Brief: Attention (Transformer) for AR

full attention
(every step sees all steps)

Brief: Attention (Transformer) for AR

causal attention
(not depend on “future”)

Brief: Attention (Transformer) for AR

go deep

Brief: Attention (Transformer) for AR
shift target by one step

Brief: Attention (Transformer) for AR

Brief: Attention (Transformer) for AR

p(x2 | x1)

Brief: Attention (Transformer) for AR

p(x3 | x1,2)

Brief: Attention (Transformer) for AR

p(x4 | x1,2,3)

Brief: Attention (Transformer) for AR

p(x5 | x1,2,3,4)

Example: image GPT (iGPT)

Chen, et al. “Generative Pretraining from Pixels”, ICML 2020

x0 xn-1

x1 xn

This figure is adapted from the original paper.

Summary: Network Architectures for AR

See also my lecture at 6.8300: “11: Sequence Modeling”: https://drive.google.com/file/d/1lOYsyImXl3caWlsplfThyuvgz-8Vn7yR/view?usp=sharing

CNNRNN Attention

Summary: Autoregressive Models
Takeaways:
• Joint distribution ⇒ product of conditionals
• Inductive bias:
• shared architecture, shared weight
• induced order

• Inference: autoregressive
• Training: teacher-forcing

• Can be done by RNN, CNN, and Transformers

This Lecture
• Conditional Distribution Modeling

• Autoregressive Models

• Network Architectures for Autoregressive Modeling

Main References
• Bengio and Bengio. “Modeling High-Dimensional Discrete Data with Multi-Layer

Neural Networks”, NeurIPS 1999
• van den Oord, et al. “Pixel Recurrent Neural Networks”, ICML 2016
• Radford, et al. “Improving Language Understanding by Generative Pre-Training”,

2018

