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Variational Autoencoder



Overview
• Variational Autoencoder (VAE)

• Relation to Expectation-Maximization (EM)

• Vector Quantized VAE (VQ-VAE)



Variational Autoencoder (VAE)



Assuming a data generation process:
• z  - latent variables
• x - observed variables

Latent Variable Models
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Assuming a data generation process:
• z  - latent variables
• x - observed variables

Latent Variable Models

sample from
prior distribution

x has a distribution 
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Assuming a data generation process:
• z  - latent variables
• x - observed variables

Latent Variable Models

p(z)
p(x|z)

p(x)

generator



Latent Variable Models
Represent a distribution by a neural network
• θ - learnable parameters
• represent a function:  

p(z) pθ(x)
pθ(x|z)

pθ(x|z)

generator



Measuring how good a distribution is ...
Minimize Kullback–Leibler (KL) divergence:

⇒ Maximize likelihood:

pθ(x)

≈

pdata(x)
tl; dr

Note: consider other criteria than KL? 



Latent Variable Models

pθ(x)

We want to maximize 



Latent Variable Models

p(z) pθ(x)

We want to maximize 
with pθ(x) represented as:

generator

pθ(x|z)



We want to maximize 
with pθ(x) represented as:

Two sets of unknowns:

Idea: introduce a “controllable” distribution q(z)

Latent Variable Models

p(z) pθ(x)• We need to optimize for θ 

• We can’t control “true” p(z) pθ(x|z)

generator



• for any distribution q(z)

• Bayes’ rule

Latent Variable Models
Rewrite log likelihood by latent z
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• for any distribution q(z)

• Bayes’ rule

Latent Variable Models

tractable tractable intractable

intractable Rewrite log likelihood by latent z
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Latent Variable Models

tractable tractable

• This is called Evidence Lower Bound (ELBO)
• Lower bound of 

• This equation holds for any distribution q(z) 

• Parameterize q(z) by qφ(z|x)

• let pθ(z) be a simple known prior p(z)

qφ(z|x) p(z)qφ(z|x)



Variational Autoencoder
Maximize ELBO ⇒ minimize an objective:
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Maximize ELBO ⇒ minimize an objective:

z decoder x′encoderx

qφ(z|x)

pθ(x|z)
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Variational Autoencoder
Maximize ELBO ⇒ minimize an objective:

z decoder x′encoderx

qφ(z|x)

p(z)

pθ(x|z)≈

Regularization loss



Reconstruction loss

Example: L2 loss
• one-step Monte Carlo:
• map z by decoder net:
• model               by Gaussian:
• negative log likelihood: 

• L2 loss ⇒ a Gaussian neighborhood around data point x

Variational Autoencoder

(assume fixed std)

network estimates 
distribution’s parameters



Regularization loss

Example: Gaussian prior
• let  
• model               by Gaussian: 
• map x by encoder net: 
• compute loss analytically: 

• fixed covariance ⇒ L2 loss on

Variational Autoencoder

(see pset 1)

(see pset 1)

again, network estimates 
distribution’s parameters



Variational Autoencoder
Maximize ELBO ⇒ minimize an objective:

z decoder x′encoderx

qφ(z|x)

pθ(x|z)

µ

σ
How to backprop 
w.r.t. sampling?



Variational Autoencoder
Maximize ELBO ⇒ minimize an objective:

z decoder x′encoderx

pθ(x|z)

µ

σ qφ(z|x)

reparametrize



Variational Autoencoder
... so far, we have discussed an objective on one x:

Overall loss is expectation over data:



Variational Autoencoder
Inference (generation):
• sample z from:
• map z by decoder net: gθ(z)

decoder
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Variational Autoencoder
Inference (generation):
• sample z from:
• map z by decoder net: gθ(z)

Decoder is a deterministic mapping from one distribution to another.

decoder



A view of “Autoencoding Distributions”
• encoder: maps data distribution to latent distribution
• decoder: maps latent distribution to data distribution

decoder

pθ(x)p(z)
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• decoder: maps latent distribution to data distribution
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pdata(x) pθ(x)p(z)



A view of “Autoencoding Distributions”
• encoder: maps data distribution to latent distribution
• decoder: maps latent distribution to data distribution

pdata(x) pθ(x)

qφ(z|x)

p(z)

pθ(x|z)



A view of “Autoencoding Distributions”
• encoded latent distribution: 

pdata(x) pθ(x)

qφ(z|x) pθ(x|z)

qφ(z)



A view of “Autoencoding Distributions”
• encoded latent distribution: 

pdata(x) pθ(x)

qφ(z|x) pθ(x|z)

qφ(z)

p(z)

E.g., see “InfoVAE: Information Maximizing Variational Autoencoders”, 2017



Illustration

Figure adapted from: Joseph Rocca “Understanding Variational Autoencoders (VAEs)” 
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

data point
x1

qφ(z|x1)

data point
x2

qφ(z|x2)

data point
x3

qφ(z|x3)

generated data



Illustration

Figure adapted from: Joseph Rocca “Understanding Variational Autoencoders (VAEs)” 
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

data point
x1

qφ(z|x1)

data point
x2

qφ(z|x2)

data point
x3

qφ(z|x3)

generated data

p(z): latent distribution  



VAE: 2D latent space on MNIST

“Convolutional Variational Autoencoder” 
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/generative/cvae.ipynb
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“Convolutional Variational Autoencoder” 
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/generative/cvae.ipynb



VAE: 2D latent space on MNIST

“Introducing Variational Autoencoders (in Prose and Code)”
https://blog.fastforwardlabs.com/2016/08/12/introducing-variational-autoencoders-in-prose-and-code.html



VAE: 2D latent space on MNIST

To pdf users: this is animation. Check it on: “Introducing Variational Autoencoders (in Prose and Code)”
https://blog.fastforwardlabs.com/2016/08/12/introducing-variational-autoencoders-in-prose-and-code.html



VAE: 2D latent space on MNIST

To pdf users: this is animation. Check it on: “Introducing Variational Autoencoders (in Prose and Code)”
https://blog.fastforwardlabs.com/2016/08/12/introducing-variational-autoencoders-in-prose-and-code.html



VAE: 2D latent space on “Frey Face” dataset

Kingma and Welling. Auto-Encoding Variational Bayes, ICLR 2014



Relation to 
Expectation-Maximization (EM)



pθ(x)
pθ(x|z)

generator

q(z)

Recap: Latent Variable Models
Two sets of variables:
• q: distribution of latent
• θ: parameters of generator

VAE:
• parametrize q by a network
• stochastic gradient decent

Expectation-Maximization (EM):
• often parametrize q analytically
• coordinate descent (i.e., alternating optimization)



EM as A Max-Max Procedure

pθ(x)
pθ(x|z)

generator

q(z)



EM as A Max-Max Procedure

Two sets of variables:
• q - distribution of latent
• θ - parameters of generator

Coordinate descent:
• max-max procedure (GAN: max-min)

pθ(x)
pθ(x|z)

generator

q(z)



E-step: optimize for q

EM as A Max-Max Procedure

pθ(x)
pθ(x|z)

generator

q(z)

Details can be found in: Hastie et al. “The Elements of Statistical Learning”.



E-step: optimize for q

M-step: optimize for θ

EM as A Max-Max Procedure

pθ(x)
pθ(x|z)

generator

q(z)

Details can be found in: Hastie et al. “The Elements of Statistical Learning”.

with sub-objective defined as:



E-step: optimize for q

M-step: optimize for θ

EM as A Max-Max Procedure

pθ(x)
pθ(x|z)

generator

q(z)

Details can be found in: Hastie et al. “The Elements of Statistical Learning”.

q: often in analytical forms
• Gaussian Mixtures
• K-means

with sub-objective defined as:



A running example of EM: K-means

Figure adapted from: Marion Neumann, https://www.cse.wustl.edu/~m.neumann/sp2016/cse517/lecturenotes/lecturenote20.html



initialized
centers

A running example of EM: K-means

Figure adapted from: Marion Neumann, https://www.cse.wustl.edu/~m.neumann/sp2016/cse517/lecturenotes/lecturenote20.html

• cluster centers: θ
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• cluster centers: θ
• assignment:



A running example of EM: K-means

Figure adapted from: Marion Neumann, https://www.cse.wustl.edu/~m.neumann/sp2016/cse517/lecturenotes/lecturenote20.html

• cluster centers: θ
• assignment: E-step

x: data point



A running example of EM: K-means

Figure adapted from: Marion Neumann, https://www.cse.wustl.edu/~m.neumann/sp2016/cse517/lecturenotes/lecturenote20.html

• cluster centers: θ
• assignment: E-step

x: another data point



A running example of EM: K-means

Figure adapted from: Marion Neumann, https://www.cse.wustl.edu/~m.neumann/sp2016/cse517/lecturenotes/lecturenote20.html

• cluster centers: θ
• assignment: E-step
• update: M-step

updating centers by:



A running example of EM: K-means

Figure adapted from: Marion Neumann, https://www.cse.wustl.edu/~m.neumann/sp2016/cse517/lecturenotes/lecturenote20.html

• cluster centers: θ
• assignment: E-step
• update: M-step



K-means as Autoencoder

x: data point

codebook (centers)

x encoder decoder x′

• encode: map x to one-hot
• decode: map one-hot to x′
• x′ is a center



K-means as Autoencoder

x: data point

codebook (centers)

x encoder decoder x′

• encode: map x to one-hot
• decode: map one-hot to x′
• x′ is a center

discrete (categorical) distribution
w/ k categories



K-means as Autoencoder
codebook (centers)

x encoder decoder x′

• encode: map x to one-hot
• decode: map one-hot to x′
• x′ is a center

codebook on MNIST, k = 64



codebook on MNIST, k = 64
K-means as Generative Models
• randomly sample: 
• map z by the decoder
• generation result is one codeword

• this is a valid generative model
• but not a “good” one
• but a good thought model



thus far, ...

• VAE: maximize ELBO
• parameterize q by network
• optimize by Stochastic Gradient Descent

• EM: maximize ELBO
• parameterize q analytically
• optimize by Coordinate Descent

• K-means:
• special case of EM; special case of AE
• discrete distribution

• next: VQ-VAE



Vector Quantized VAE (VQ-VAE)



Recap
• Original VAE: latent variables are continuous

pdata(x) pθ(x)

qφ(z|x) pθ(x|z)

qφ(z)



Discrete Latent Variables
• model multimodal distributions
• categorical: no particular relation between numbers (SSN, zip code, ...)
• symbolic: language, speech, planning, ...

pdata(x) pθ(x)

qφ(z|x) pθ(x|z)

qφ(z)



Discrete Latent Variables + VAE
Maximize ELBO
• Reconstruction loss: about x
• Regularization loss: about z (discrete)

pdata(x) pθ(x)

qφ(z|x) pθ(x|z)

qφ(z)



Discrete Latent Variables + VAE
Reconstruction loss: about x
• same as VAE:  

pdata(x) pθ(x)

qφ(z|x) pθ(x|z)

qφ(z)

Reconstruction loss (e.g., L2)



Discrete Latent Variables + VAE
Regularization loss: about z
• conceptually, same as VAE:
• but how can we backprop w.r.t. discrete sampling? 

pdata(x) pθ(x)

qφ(z|x) pθ(x|z)

qφ(z)

p(z)
Regularization loss



Discrete Latent Variables + VAE
Solution: K-means
• K-means is autoencoding
• K-means has an objective function (reconstruction loss)
• K-means implicitly encourages codebook uniformity

This leads us to VQ-VAE ...



Vector Quantized VAE

ze
VQ 

encoder
VQ

decoder zqencoderx x′decoder

codebook

e0 e1 ...

z

continuous continuousdiscrete
(one-hot)



Vector Quantized VAE

ze
VQ 

encoder
VQ

decoder zqencoderx x′decoder

codebook

e0 e1 ...

z

Reconstruction loss



*The VQ-VAE paper uses                                                     which weights the gradients differently 

Vector Quantized VAE

ze
VQ 

encoder
VQ

decoder zqencoderx x′decoder

codebook

e0 e1 ...

z

Regularization loss
conceptually, this is the K-means reconstruction loss:



ze
VQ 

encoder
VQ

decoder zqencoderx x′decoder

codebook

e0 e1 ...

z

How to backprop through one-hot vector?

“straight-through” trick
• forward: hardmax’s output (i.e., argmax and one-hot)
• backward: softmax’s gradient
• in code: stop_grad(hardmax(y) - softmax(y)) + softmax(y)



Vector Quantized VAE
A single one-hot latent is not useful
• it’s “deep K-means”: with deep encoder/decoder
• a valid generative model; but not a “good” one

VQ-VAE: often used as “tokenizers”
• output multiple one-hot vectors
• don’t reduce latent spatial/temporal size to 1
• use ConvNet/Transformer as encoder and decoder 



VQ-VAE as Tokenizers

ze
VQ 

encoder
VQ

decoder zq
ConvNet
encoder

x x′

ConvNet
decoder

codebook

e0 e1 ...

z



Notes
• Both VAE and VQ-VAE can be “tokenizers” (produce spatial latents).

But:
• prior p(z) only models per-token (per-location) distribution
• prior p(z) doesn’t model joint distribution across tokens
• spatial tokens are not independent
• at inference, we can’t sample from i.i.d. prior p(z)

Next: modeling joint distribution:
• Autoregressive models
• Masked models
• Diffusion models



This Lecture
• Variational Autoencoder (VAE)

• Relation to Expectation-Maximization (EM)

• Vector Quantized VAE (VQ-VAE)
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