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Diffusion sampling is slow

• At least 10 steps for generating 

reasonable images.

• For best quality, often needs 

thousands of sampling steps.

How to tackle this 

fundamental challenge in 

sampling speed?

Consistency models



B A C K G R O U N D :  C O N T I N U O U S - T I M E  D I F F U S I O N  M O D E L S

Song, et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021



Estimating the probability distribution of data

Data samples



Estimating the probability distribution of data

Data distribution

(unknown)

Novel data points

Model distributionGenerative model



Deforming data distribution to Gaussian



Perturbing data with stochastic processes

Stochastic process

Probability densities

Infinitesimal noiseDeterministic drift

Stochastic differential equation (SDE)

WLOG: Toy SDE

8



Generation via reverse stochastic processes

Forward SDE (t: 0T)

Reverse SDE (t: T0)

Infinitesimal noise in 
the reverse time 

direction

Score function!9



Score-based generative modeling via SDEs

[Song et al. ICLR 2021]



Score-based generative modeling via SDEs

Time conditional

score model

Training objective:

Positive weighting 
function

Score matching loss

[Song et al. ICLR 2021]



High-fidelity generation of 1024x1024 images

[Song et al. ICLR 2021]



SDE

Ordinary differential equation 

(probability flow ODE)

Score function

Converting the SDE to an ODE

[Song et al. ICLR 2021]



B A S I C S  O F  C O N S I S TE N C Y  M O D E L S

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023



Consistency models are designed for one-step generation

Data Noise

How does this differ 

from a denoiser?

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023

Probability flow ODE (PF ODE)



Data Noise

Consistency models learn this one-to-one mapping

Consistency models are trained 

to map points on any trajectory of 

the PF ODE to the trajectory’s 

origin in one step.

Boundary condition

Enforced via network 

parameterization

Enforced via learning

Self-consistency

Probability flow ODE (PF ODE)



Sampling from consistency models

• Trading compute 

for quality

• Zero-shot image 

editing

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023



Enforcing the boundary condition

• Skip connections for enforcing the 

boundary condition:

• The denoising/score network in diffusion 

models often has a similar 

parameterization (cf., EDM, v-prediction, 

etc.)끫룊끫룂 끫룂
U-Net

끫롲끫븆(끫룊끫룂, 끫룂)
끫뢦끫븆(끫룊끫룂, 끫룂)끫뢠끫뢸끫뢸끫룂(끫룂)

끫뢠끫룀끫룀끫룀끫룀(끫룂)

Karras, Tero, et al. "Elucidating the design space of diffusion-based 
generative models." arXiv preprint arXiv:2206.00364 (2022).



Training consistency models via distillation

Data Noise



Training consistency models via distillation

Data Noise

One ODE sampling 

step using a given 

diffusion model.



Training consistency models via distillation

Data Noise

ODE sampling using a 

given diffusion model.

Minimize the following consistency loss

Weighting function



Training consistency models via distillation

Data Noise



Enforcing self-consistency via distillation

ODE solver 
+ pretrained 
score function

ODE solver 
+ pretrained 
score function

ODE solver 
+ pretrained 
score function



Training consistency models via distillation

• Given a pre-trained score model

• With a random time step          and perturbed data point   

• Run one ODE step to move from time step           to time step  

• Minimize the consistency loss

• The L2 loss can be replaced with any other loss function, like LPIPS.Target network
The weighting 

function
Weights are obtained via 

exponential moving average

Student network



State-of-the-art few-step generation with 
consistency distillation (CD)

Results on the good old CIFAR-10 dataset

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023



State-of-the-art few-step generation with 
consistency distillation (CD)

Consistency distillation (CD) vs. progressive distillation (PD)

Salimans, Tim, and Jonathan Ho. "Progressive 

distillation for fast sampling of diffusion 

models." arXiv preprint arXiv:2202.00512 (2022).



Consistency models distilled from diffusion models

EDM

FID = 2.44

NFE = 79

One step

FID = 6.20

NFE = 1

Two steps

FID = 4.70

NFE = 2



Consistency models distilled from diffusion models

EDM

FID = 3.57

NFE = 79

One step

FID = 7.80

NFE = 1

Two steps

FID = 5.22

NFE = 2



Consistency decoder in DALLE 3



Latent consistency models

Luo, S., Tan, Y., Huang, L., Li, J. and Zhao, H., 2023. Latent Consistency Models: Synthesizing 
High-Resolution Images with Few-Step Inference. arXiv preprint arXiv:2310.04378.

Demo

https://huggingface.co/spaces/radames/Real-Time-Latent-Consistency-Model


Training consistency models directly from data

• Consistency training

• Sample a random noise level           , a data point     , and Gaussian noise  

• Minimize the following objective

• Theoretical justification

• No need to pretrain a diffusion model!

• Can be generalized to non-L2 losses.

When                                         , the above 

objective converges to the distillation objective 

that uses the ground truth diffusion model.

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023



Continuous-time consistency training

• Motivation: removing the potential bias in finite time steps.

• Continuous-time consistency training

• Sample a random time step   , a data point    , and a perturbed data point

• Minimize the following objective

• Can be generalized to non-l2 losses.

• No need to choose discrete time steps.

• Pseudo-objective: loss value is meaningless, but provides the right gradients.

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023



Catalog of one-step generative models

• VAEs

• Stable training (maximum likelihood)

• Tractable likelihood estimation

• Low sample quality

• GANs

• Unstable training (adversarial 

games)

• High sample quality

• No likelihoods

• Normalizing flows

• Stable training (maximum likelihood)

• Exact likelihood computation

• Restricted model architecture

• Low sample quality

• Consistency models

• Stable training (pseudo-objective)

• High sample quality

• No likelihoods

• Moderate architecture constraints.



Consistency models as new generative models

Results on CIFAR-10

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023



Consistency models as new generative models

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023



Consistency models as new generative models

EDM

FID = 2.44

NFE = 79

One step

FID = 12.96

NFE = 1

Two steps

FID = 11.12

NFE = 2



Consistency models as new generative models

EDM

FID = 3.57

NFE = 79

One step

FID = 16.00

NFE = 1

Two steps

FID = 7.80

NFE = 2



Solving linear inverse problems with consistency models

• Problem: solving linear inverse problems with a consistency model prior.

• Examples: colorization, inpainting, super-resolution, computed tomography, 
magnetic resonance imaging, cryo-electon tomography, photoacoustic tomography, 
…  

끫료 끫룊
Forward process 끫료 = 끫롨끫룊
Inverse problem끫룊 ∼ 끫뢺 끫룊 끫료) 

Consistency 

model prior끫뢺(끫룊)

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023



Solving linear inverse problems with consistency models

• Algorithm: alternating data generation and data consistency steps.

끫룊끫뢎 끫룊끫룂끫뢶
끫룊0

끫룊끫룂끫뢶−1 끫룊끫룂1

끫료
끫룊0 끫룊0

Data consistency Data consistency

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023



Zero-shot image editing

Colorization

Super-resolution

Inpainting



Zero-shot image editing

Interpolation

One-step denoising



Zero-shot image editing

Stroke-guided image generation



Summary

• Consistency models have native support for one-step generation.

• Consistency models allow multistep generation and zero-shot image editing.

• Consistency models are both a diffusion distillation technique, and a new 

generative model.



I M P R O V E D  T E C H N I Q U E S  F O R  C O N S I S TE N C Y  T R A I N I N G

Song, Dhariwal. Improved Techniques for Consistency Training, ICLR 2024



Weighting functions, noise embeddings, and dropout

• Uniform weighting  Larger 

weighting for smaller noise

• Reducing the sensitivity of 

noise embeddings for better 

training stability

• Larger dropout than diffusion 

models results in higher one-

step quality



Using zero EMA decay rate for theoretical soundness

• Previous belief: the 

consistency training loss 

converges to the loss of 

consistency distillation in the 

limit of small noise gaps.

• Improved analysis: their 

gradients must match as well, 

which only happens when the 

EMA is zero.



Measuring self-consistency with pseudo-Huber loss

• Squared L2 distance has poor 

performance.

• LPIPS performs well but biases 

evaluation.

• Our solution: pseudo-Huber 

losses



Improving the noise schedule

Double the total number of noise levels 
during training per fixed number of iterations.

Baseline

Ours

Baseline

Ours



Improving the noise schedule

Sampling noise levels according to 

discretized lognormal



Improved Techniques for Consistency Training
Results on CIFAR-10



CIFAR-10 samples from improved consistency training

One step

FID = 2.51, IS = 9.76

NFE = 1

Two step

FID = 2.24, IS = 9.89

NFE = 2



Improved techniques for consistency training

Song, Dhariwal. Improved Techniques for Consistency Training, 2023



Summary

• Remove the dependency on LPIPS

• Faster training

• No metric gaming and data contamination in evals.

• Recipe for consistency training that outperforms consistency distillation

• Consistency models are among the state-of-the-art one-step generative models, 

on par with GANs, and better than VAEs, normalizing flows, etc.



C O N T I N U O U S - T I M E  C O N S I S TE N C Y  M O D E L S

Lu, Song. Simplifying, Stabilizing & Scaling Continuous-Time Consistency Models. 2024



Accumulated discretization errors in discrete-time CMs

55

Small discretization errors at intermediate steps can compound

May be on different trajectory



Accumulated discretization errors in discrete-time CMs

56



Accumulated discretization errors in discrete-time CMs

57



Continuous-time CMs: avoid discretization errors

58

Using the tangent direction as supervision signals



Continuous-time CMs: Two types of derivations

59

Continuous-time limit
of the consistency 
distillation objective:

Stop gradients for 끫빺
Continuous-time limit 
of the gradient:



Continuous-time CMs: Taking limits for gradient!

60

Limit of objective:
• Gradients do not match discrete-time CMs

• Difficulty from “gradient of gradient”

• Smoothly transition the gradient

landscape from discrete time to

continuous time

• Deep-learning-friendly 

Limit of gradient:



Continuous-time consistency training: unbiased gradient!

61

• Same estimator in Flow Matching!

In continuous-time, the gradient of CT is an unbiased estimator of that of CD.



Key difficulty in training continuous-time CMs: tangent variance

62

The variance of the tangent causes training instability!

e.g., previous works find that when decreasing Δ끫룂, the training becomes
extremely unstable, leading to worse performance.



Part 1: Simplified formulations of diffusion models and CMs

63

TrigFlow: unifying EDM and Flow Matching by trigonometric interpolations

Diffusion process:

PF-ODE:

Consistency model:

Boundary condition:



Part 2: Stabilizing the training of continuous-time CMs

64

Consistency model:

Tangent:

Stable

(Init from diffusion)

Stable

(pretrained diffusion)

Stable

(constant variance)



Part 2: Stabilizing the training of continuous-time CMs

65

Consistency model:

Tangent:

Stable

(Jacobian during BP)

Stable

(pretrained diffusion)



Part 2: Stabilizing the training of continuous-time CMs

66

Consistency model:

Tangent:

Key: design network architecture that is well-conditioned w.r.t. 끫룂.



Part 2: Stabilizing the training of continuous-time CMs

67

Consistency model:

Tangent:

• Previous methods: 끫뢠끫뢶끫뢸끫룀끫룀끫뢶 끫룂 = log tan 끫룂
• Ours: 끫뢠끫뢶끫뢸끫룀끫룀끫뢶 끫룂 = 끫룂



Part 2: Stabilizing the training of continuous-time CMs

68

Consistency model:

Tangent:

• Use small Fourier scales

• Reason: cos’(fx) = - f * sin(fx)



Part 2: Stabilizing the training of continuous-time CMs

69

Consistency model:

Tangent:

• Modify AdaGN layer to add normalization in time.



Part 2: Stabilizing the training of continuous-time CMs

70



Part 3: Reducing the variance across time steps

71

Original objective:

Adaptive weighting:

Optimal weighting will balance the

variance across time steps:

No need for manually-designed weighting!



Part 4: Reducing the variance across data points

72

may have outliers at some dimensions of certain inputs

Intuition: mapping Gaussian to mixture-of-Gaussians will always have

non-Lipschitzness at the boundary.

Solution: ignore the outliers, focus on the training at high density regions→ Replace
끫뤊끫뤊끫뤊끫뤊 with

끫뤊끫뤊끫뤊끫뤊 /(
끫뤊끫뤊끫뤊끫뤊 + 끫뤈), where 끫뤈 is a hyperparameter.



Effectiveness of variance reduction

73



Continuous-time CMs outperform discrete-time CMs

74

For the first time!



Comparable quality with 1/10 effective sampling compute

75



Selected 2-step samples on ImageNet 512x512

76



sCM scales commensurately with teacher diffusion models

77

Same scaling property!



Quantitative Results on ImageNet 64x64



Quantitative Results on ImageNet 512x512



• Continuous-time CMs avoid the discretization error of PF-ODEs, producing 

better samples than discrete-time CMs.

• Always keep training stability in mind when designing scalable algorithms.

• Continuous-time CMs reduce the performance gap to SOTA diffusion models 

to within 10%, while achieving approximately a 50x speedup in sampling.

Summary
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