Consistency Models

Yang Song

Prafulla Dhariwal

Mark Chen

Ilya Sutskever

Cheng Lu

Stanford University

The success of diffusion models

OpenAl DALL-E 3

OpenAl Sora

Diffusion sampling is slow

- At least 10 steps for generating reasonable images.
- For best quality, often needs thousands of sampling steps.

How to tackle this fundamental challenge in sampling speed?

Consistency models

BACKGROUND: CONTINUOUS-TIME DIFFUSION MODELS

Song, et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021

Stanford University

Estimating the probability distribution of data

Data samples

000

Estimating the probability distribution of data

Deforming data distribution to Gaussian

			 -		-

Score-based generative modeling via SDEs

[Song et al. ICLR 2021]

Score-based generative modeling via SDEs

High-fidelity generation of 1024x1024 images

Converting the SDE to an ODE

[Song et al. ICLR 2021]

BASICS OF CONSISTENCY MODELS

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023

Stanford University

Consistency models are designed for one-step generation Probability flow ODE (PF ODE) Noise

$$oldsymbol{f}_{oldsymbol{ heta}}(oldsymbol{x}_{\sigma_{ ext{max}}},\sigma_{ ext{max}})$$

How does this differ from a denoiser?

?

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023

Consistency models learn this one-to-one mapping

Consistency models are trained to map points on any trajectory of the PF ODE to the trajectory's origin **in one step**.

 $f_{\theta}(x_{\sigma},\sigma) = x_0$

Boundary condition

$$\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_0, 0) = \mathbf{x}_0$$

Enforced via network parameterization

Enforced via learning

Self-consistency

 $orall \sigma, \sigma' \in [0, \sigma_{\max}] : oldsymbol{f}_{oldsymbol{ heta}}(oldsymbol{x}_{\sigma}, \sigma) = oldsymbol{f}_{oldsymbol{ heta}}(oldsymbol{x}_{\sigma'}, \sigma')$

Sampling from consistency models

Enforcing the boundary condition

• Skip connections for enforcing the boundary condition:

$$f_{\theta}(\mathbf{x}, t) = c_{\text{skip}}(t)\mathbf{x} + c_{\text{out}}(t)F_{\theta}(\mathbf{x}, t)$$
$$c_{\text{skip}}(0) = 1$$
$$c_{\text{out}}(0) = 0$$

• The denoising/score network in diffusion models often has a similar parameterization (cf., EDM, v-prediction, etc.)

Karras, Tero, et al. "Elucidating the design space of diffusion-based generative models." *arXiv preprint arXiv:2206.00364* (2022).

Enforcing self-consistency via distillation

- Given a pre-trained score model $s_{\phi}(\mathbf{x},t)$
- With a random time step t_{n+1} and perturbed data point $\mathbf{X}_{t_{n+1}}$
 - Run one ODE step to move from time step t_{n+1} to time step t_n

$$\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}} \coloneqq \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1}) \Phi(\mathbf{x}_{t_{n+1}}, t_{n+1}; \boldsymbol{\phi}) \\ \approx \mathbf{x}_{t_n}$$

• Minimize the consistency loss

 $\min_{\boldsymbol{\theta}} \begin{bmatrix} \lambda(t_n) \| \boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_{n+1}}, t_{n+1}) - \| \boldsymbol{f}_{\boldsymbol{\theta}^{-}}(\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}}, t_n) \|_2^2$ • The L2 loss can be replaced with any other taget we work, like LPIPS. Weights are obtained via exponential moving average

State-of-the-art few-step generation with consistency distillation (CD)

METHOD	NFE (\downarrow)	$FID(\downarrow)$	IS (†)
Diffusion + Samplers			
DDIM (Song et al., 2020)	50	4.67	
DDIM (Song et al., 2020)	20	6.84	
DDIM (Song et al., 2020)	10	8.23	
DPM-solver-2 (Lu et al., 2022)	10	5.94	
DPM-solver-fast (Lu et al., 2022)	10	4.70	
3-DEIS (Zhang & Chen, 2022)	10	4.17	
Diffusion + Distillation			
Knowledge Distillation* (Luhman & Luhman, 2021)	1	9.36	
DFNO* (Zheng et al., 2022)	1	4.12	
1-Rectified Flow (+distill)* (Liu et al., 2022)	1	6.18	9.08
2-Rectified Flow (+distill)* (Liu et al., 2022)	1	4.85	9.01
3-Rectified Flow (+distill)* (Liu et al., 2022)	1	5.21	8.79
PD (Salimans & Ho, 2022)	1	8.34	8.69
CD	1	3.55	9.48
PD (Salimans & Ho, 2022)	2	5.58	9.05
CD	2	2.93	9 75

Results on the good old CIFAR-10 dataset

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023

State-of-the-art few-step generation with consistency distillation (CD)

Consistency distillation (CD) vs. progressive distillation (PD)

Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models." *arXiv preprint arXiv:2202.00512* (2022).

Consistency models distilled from diffusion models

EDM FID = 2.44 NFE = 79 One step FID = 6.20 NFE = 1

Two steps FID = 4.70 NFE = 2

Consistency models distilled from diffusion models

EDM FID = 3.57 NFE = 79 One step FID = 7.80 NFE = 1

Two steps FID = 5.22 NFE = 2

Consistency decoder in DALLE 3

if you get the chance, do try decoding your Stable Diffusion generations with this decoder. You should see some improvements in text, small faces and straight lines. Made with @_tim_brooks, @DrYangSong, @model_mechanic, @txhf, @neonbjb github.com/openai/consist...

...

Latent consistency models

Luo, S., Tan, Y., Huang, L., Li, J. and Zhao, H., 2023. Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference. *arXiv preprint arXiv:2310.04378*.

Training consistency models directly from data

Consistency training

- Sample a random noise level σ_{n+1} , a data point $m{x}$, and Gaussian noise $m{z}$
- Minimize the following objective

 $\min_{\boldsymbol{\theta}} \mathbb{E}[\lambda(\sigma_n) d(\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x} + \sigma_{n+1}\boldsymbol{z}, \sigma_{n+1}), \boldsymbol{f}_{\boldsymbol{\theta}^-}(\boldsymbol{x} + \sigma_n \boldsymbol{z}, \sigma_n))]$

Theoretical justification

When $|\Delta \sigma_n| = |\sigma_{n+1} - \sigma_n| \rightarrow 0$, the above objective converges to the distillation objective that uses the **ground truth diffusion model**.

- No need to pretrain a diffusion model!
- Can be generalized to non-L2 losses.

Continuous-time consistency training

- **Motivation:** removing the potential bias in finite time steps.
- Continuous-time consistency training
 - Sample a random time step t, a data point ${f x}$, and a perturbed data point ${f x}_t$
 - Minimize the following objective

$$\mathbb{E}\left[\lambda(t)\boldsymbol{f}_{\boldsymbol{\theta}}^{\mathsf{T}}(\mathbf{x}_{t},t)\operatorname{stopgrad}\left(\frac{\partial\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t},t)}{\partial t}+\frac{\partial\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t},t)}{\partial \mathbf{x}_{t}}\cdot\frac{\mathbf{x}_{t}-\mathbf{x}}{t}\right)\right]$$

- Can be generalized to non-l2 losses.
- No need to choose discrete time steps.
- **Pseudo-objective:** loss value is meaningless, but provides the right gradients.

Catalog of one-step generative models

• VAEs

- Stable training (maximum likelihood)
- Tractable likelihood estimation
- Low sample quality

• GANs

- Unstable training (adversarial games)
- High sample quality
- No likelihoods

Normalizing flows

- Stable training (maximum likelihood)
- Exact likelihood computation
- Restricted model architecture
- Low sample quality

Consistency models

- Stable training (pseudo-objective)
- High sample quality
- No likelihoods
- Moderate architecture constraints.

Consistency models as new generative models

Results on CIFAR-10

Direct Generation			
BigGAN (Brock et al., 2019)	1	14.7	9.22
Diffusion GAN (Xiao et al., 2022)	1	14.6	8.93
AutoGAN (Gong et al., 2019)	1	12.4	8.55
E2GAN (Tian et al., 2020)	1	11.3	8.51
ViTGAN (Lee et al., 2021)	1	6.66	9.30
TransGAN (Jiang et al., 2021)	1	9.26	9.05
StyleGAN2-ADA (Karras et al., 2020)	1	2.92	9.83
StyleGAN-XL (Sauer et al., 2022)	1	1.85	
Score SDE (Song et al., 2021)	2000	2.20	9.89
DDPM (Ho et al., 2020)	1000	3.17	9.46
LSGM (Vahdat et al., 2021)	147	2.10	
PFGM (Xu et al., 2022)	110	2.35	9.68
EDM (Karras et al., 2022)	35	2.04	9.84
1-Rectified Flow (Liu et al., 2022)	1	378	1.13
Glow (Kingma & Dhariwal, 2018)	1	48.9	3.92
Residual Flow (Chen et al., 2019)	1	46.4	
GLFlow (Xiao et al., 2019)	1	44.6	
DenseFlow (Grcić et al., 2021)	1	34.9	
DC-VAE (Parmar et al., 2021)	1	17.9	8.20
СТ	1	8.70	8.49
СТ	2	5.83	8.85

Song, Dhariwal, Chen, Sutskever. Consistency Models. ICML 2023

Consistency models as new generative models

METHOD	NFE (\downarrow)	$FID(\downarrow)$	Prec. (†)	Rec. (†)
ImageNet 64×64				
ADM (Dhariwal & Nichol, 2021)	250	2.07	0.74	0.63
EDM (Karras et al., 2022)	79	2.44	0.71	0.67
BigGAN-deep (Brock et al., 2019)	1	4.06	0.79	0.48
ст 🦾	1	13.0	0.71	0.47
ст	2	11.1	0.69	0.56
LSUN Bedroom 256×256				
DDPM (Ho et al., 2020)	1000	4.89	0.60	0.45
ADM (Dhariwal & Nichol, 2021)	1000	1.90	0.66	0.51
EDM (Karras et al., 2022)	79	3.57	0.66	0.45
PGGAN (Karras et al., 2018)	1	8.34		
PG-SWGAN (Wu et al., 2019)	1	8.0		
TDPM (GAN) (Zheng et al., 2023)	1	5.24		
StyleGAN2 (Karras et al., 2020)	1	2.35	0.59	0.48
ст 🦾	1	16.0	0.60	0.17
ст 🦾	2	7.85	0.68	0.33

METHOD	NFE (\downarrow)	$FID(\downarrow)$	Prec. (\uparrow)	Rec. (†)
LSUN Cat 256 \times 256				
DDPM (Ho et al., 2020)	1000	17.1	0.53	0.48
ADM (Dhariwal & Nichol, 2021)	1000	5.57	0.63	0.52
EDM (Karras et al., 2022)	79	6.69	0.70	0.43
PGGAN (Karras et al., 2018)	1	37.5		
StyleGAN2 (Karras et al., 2020)	1	7.25	0.58	0.43
СТ	1	20.7	0.56	0.23
ст 🦾	2	11.7	0.63	0.36

Consistency models as new generative models

EDM FID = 2.44 NFE = 79 One step FID = 12.96 NFE = 1

Two steps FID = 11.12 NFE = 2
Consistency models as new generative models

EDM FID = 3.57 NFE = 79 One step FID = 16.00 NFE = 1

Two steps FID = 7.80 NFE = 2

Solving linear inverse problems with consistency models

• **Problem:** solving linear inverse problems with a consistency model prior.

• **Examples:** colorization, inpainting, super-resolution, computed tomography, magnetic resonance imaging, cryo-electon tomography, photoacoustic tomography,

. . .

Solving linear inverse problems with consistency models

• Algorithm: alternating data generation and data consistency steps.

Zero-shot image editing

Colorization

Super-resolution

Inpainting

Zero-shot image editing

Interpolation

One-step denoising

Zero-shot image editing

Stroke-guided image generation

- Consistency models have native support for one-step generation.
- Consistency models allow multistep generation and zero-shot image editing.
- Consistency models are both a diffusion distillation technique, and a new generative model.

IMPROVED TECHNIQUES FOR CONSISTENCY TRAINING

Song, Dhariwal. Improved Techniques for Consistency Training, ICLR 2024

Stanford University

Weighting functions, noise embeddings, and dropout

 Uniform weighting → Larger weighting for smaller noise

 $\lambda(\sigma_n) \propto rac{1}{\sigma_{n+1} - \sigma_n}$

- Reducing the sensitivity of noise embeddings for better training stability
- Larger dropout than diffusion models results in higher onestep quality

Using zero EMA decay rate for theoretical soundness

- **Previous belief:** the consistency training loss converges to the loss of consistency distillation in the limit of small noise gaps.
- Improved analysis: their gradients must match as well, which only happens when the EMA is zero.

$$oldsymbol{ heta}^- = \mathrm{EMA}_\mu(oldsymbol{ heta}) \ igcup \mu = 0 \ oldsymbol{ heta}^- = \mathrm{stopgrad}(oldsymbol{ heta})$$

Measuring self-consistency with pseudo-Huber loss

Squared L2 distance has poor performance.

LPIPS performs well but biases evaluation.

Our solution: pseudo-Huber losses

$$d(x, y) = \sqrt{\|x - y\|_2^2 + c^2 - c}$$

Improving the noise schedule

Double the total number of noise levels during training per fixed number of iterations.

Improving the noise schedule

Improved Techniques for Consistency Training

Results on CIFAR-10

METHOD	NFE (\downarrow) FID (\downarrow) IS (\uparrow)		IS (†)	METHOD	NFE (\downarrow) FID (\downarrow) IS (\uparrow)		
Fast samplers & distillation for diffusion models	Direct Generation						
DDIM (Song et al., 2020)	10	13.36	2.12	Score SDE (Song et al., 2021)	2000	2.38	9.83
DPM-solver-fast (Lu et al., 2022)	10	4.70		Score SDE (deep) (Song et al., 2021)	2000	2.20	9.89
3-DEIS (Zhang & Chen, 2022)	10	4.17		DDPM (Ho et al., 2020)	1000	3.17	9.46
UniPC (Zhao et al., 2023)	10	3.87		LSGM (Vahdat et al., 2021)	147	2.10	
Knowledge Distillation (Luhman & Luhman, 2021)	1	9.36		PFGM (Xu et al., 2022)	110	2.35	9.68
DFNO (LPIPS) (Zheng et al., 2022)	1	3.78		EDM* (Karras et al., 2022)	35	2.04	9.84
2-Rectified Flow (+distill) (Liu et al., 2022)	1	4.85	9.01	EDM-G++ (Kim et al., 2023)	35	1.77	
TRACT (Berthelot et al., 2023)	1	3.78		IGEBM (Du & Mordatch, 2019)	60	40.6	6.02
	2	3.32		NVAE (Vahdat & Kautz, 2020)	1	23.5	7.18
Diff-Instruct (Luo et al., 2023)	1	4.53	9.89	Glow (Kingma & Dhariwal, 2018)	1	48.9	3.92
PD* (Salimans & Ho, 2022)	1	8.34	8.69	Residual Flow (Chen et al., 2019)	1	46.4	
	2	5.58	9.05	BigGAN (Brock et al., 2019)	1	14.7	9.22
CD (LPIPS) (Song et al., 2023)	1	3.55	9.48	StyleGAN2 (Karras et al., 2020b)	1	8.32	9.21
	2	2.93	9.75	StyleGAN2-ADA (Karras et al., 2020a)	1	2.92	9.83
				CT (LPIPS) (Song et al., 2023)	1	8.70	8.49
					2	5.83	8.85
				iCT (ours)	1	2.83	9.54
					2	2.46	9.80
				iCT-deep (ours)	1	2.51	9.76
			,		2	2.24	9.89

CIFAR-10 samples from improved consistency training

One step FID = 2.51, IS = 9.76 NFE = 1 Two step FID = 2.24, IS = 9.89 NFE = 2

Improved techniques for consistency training

	Design choice in Song et al. (2023)	Our modifications			
EMA decay rate for the teacher network	$\mu(k) = \exp(\frac{s_0 \log \mu_0}{N(k)})$	$\mu(k) = 0$			
Metric in consistency loss	$d(\boldsymbol{x}, \boldsymbol{y}) = ext{LPIPS}(\boldsymbol{x}, \boldsymbol{y})$	$d(m{x},m{y}) = \sqrt{\ m{x}-m{y}\ _2^2 + c^2} - c$			
Discretization curriculum	$N(k) = \left[\sqrt{\frac{k}{K}((s_1+1)^2 - s_0^2) + s_0^2} - 1\right] + 1$	$N(k) = \min(s_0 2^{\lfloor \frac{k}{K'} \rfloor}, s_1) + 1,$ where $K' = \left\lfloor \frac{K}{\log_2 \lfloor s_1 / s_0 \rfloor + 1} \right\rfloor$			
Noise schedule	$t_i,$ where $i \sim \mathcal{U}\llbracket 1, N(k) - 1 rbracket$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
Weighting function	$\lambda(t_i)=1$	$\lambda(t_i) = rac{1}{t_{i+1}-t_i}$			
Parameters	$s_0 = 2, s_1 = 150, \mu_0 = 0.9$ on CIFAR-10	$s_0 = 10, s_1 = 1280$			
	$s_0 = 2, s_1 = 200, \mu_0 = 0.95$ on ImageNet 64×64	$c = 0.00054\sqrt{d}, d$ is data dimensionality			
		$P_{\rm mean} = -1.1, P_{\rm std} = 2.0$			
	$k \in [\![0, K]\!]$, where K is the total training iterations				
	$t_i = (t_{\min}^{1/\rho} + \frac{i-1}{N(k)-1}(t_{\max}^{1/\rho} - t_{\min}^{1/\rho}))^{\rho}$, where $i \in [[1, N(k)]], \rho = 7, t_{\min} = 0.002, t_{\max} = 80$				

Song, Dhariwal. Improved Techniques for Consistency Training, 2023

Summary

- Remove the dependency on LPIPS
 - Faster training
 - No metric gaming and data contamination in evals.
- Recipe for consistency training that outperforms consistency distillation
- Consistency models are among the state-of-the-art one-step generative models, on par with GANs, and better than VAEs, normalizing flows, etc.

CONTINUOUS-TIME CONSISTENCY MODELS

Lu, Song. Simplifying, Stabilizing & Scaling Continuous-Time Consistency Models. 2024

Accumulated discretization errors in discrete-time CMs

Small discretization errors at intermediate steps can compound

$$\min_{\boldsymbol{\theta}} \lambda(\sigma_n) d(\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x}_{\sigma_{n+1}}, \sigma_{n+1}), \boldsymbol{f}_{\boldsymbol{\theta}^-}(\boldsymbol{x}_{\sigma_n}, \sigma_n))$$

May be on different trajectory

Accumulated discretization errors in discrete-time CMs

Accumulated discretization errors in discrete-time CMs

Continuous-time CMs: avoid discretization errors

Using the tangent direction as supervision signals

Continuous-time CMs: Two types of derivations

Continuous-time limit of the consistency distillation objective:

$$\lim_{\Delta t
ightarrow 0} rac{1}{(\Delta t)^2} \|f_ heta(x_t,t) - f_{ heta^-}(x_t,t)\|_2^2 = \left\|rac{\mathrm{d} f_ heta(x_t,t)}{\mathrm{d} t}
ight\|_2^2$$

Continuous-time limit of the gradient:

$$\lim_{\Delta t o 0}
abla_ heta rac{1}{\Delta t} \|f_ heta(x_t,t) - f_{ heta^-}(x_t,t)\|_2^2 =
abla_ heta f_ heta^ op(x_t,t) rac{\mathrm{d} f_{ heta^-}(x_t,t)}{\mathrm{d} t}$$

Stop gradients for θ

Continuous-time CMs: Taking limits for gradient!

Limit of objective:

$$\left\|rac{\mathrm{d} f_{ heta}(x_t,t)}{\mathrm{d} t}
ight\|_2^2$$

- Gradients do not match discrete-time CMs
- Difficulty from "gradient of gradient"

Limit of gradient:

$$f_ heta^ op(x_t,t)rac{\mathrm{d} f_{ heta^-}(x_t,t)}{\mathrm{d} t}$$

• Smoothly transition the gradient

landscape from discrete time to continuous time

• Deep-learning-friendly 🙂

Continuous-time consistency training: unbiased gradient!

$$rac{\mathrm{d} f_{ heta^-}(x_t,t)}{\mathrm{d} t} =
abla_{x_t} f_{ heta^-} \cdot rac{\mathrm{d} x_t}{\mathrm{d} t} + \partial_t f_{ heta^-}$$

• Same estimator in Flow Matching!

$$\mathbb{E}_{x_0,z}\left[rac{\mathrm{d}f_{ heta^-}(x_t,t)}{\mathrm{d}t}
ight] = \mathbb{E}_{x_t}\left[
abla_{x_t}f_{ heta^-}\cdot\mathbb{E}_{x_0|x_t}\left[\dotlpha_tx_0+\dot\sigma_tz
ight]+\partial_tf_{ heta^-}
ight]
onumber \ z=rac{x_t-lpha_tx_0}{\sigma_t}$$

In continuous-time, the gradient of CT is an **unbiased estimator** of that of CD.

Key difficulty in training continuous-time CMs: tangent variance

$$\nabla_{\theta} \mathbb{E}_{\boldsymbol{x}_{t},t} \left[w(t) \boldsymbol{f}_{\theta}^{\top}(\boldsymbol{x}_{t},t) \frac{\mathrm{d} \boldsymbol{f}_{\theta^{-}}(\boldsymbol{x}_{t},t)}{\mathrm{d} t} \right]$$

$$= \nabla_{\boldsymbol{x}_t} \boldsymbol{f}_{\theta^-}(\boldsymbol{x}_t, t) \frac{\mathrm{d}\boldsymbol{x}_t}{\mathrm{d}t} + \partial_t \boldsymbol{f}_{\theta^-}(\boldsymbol{x}_t, t)$$

The variance of the tangent causes training instability!

e.g., previous works find that when decreasing Δt , the training becomes extremely unstable, leading to worse performance.

Part 1: Simplified formulations of diffusion models and CMs

TrigFlow: unifying EDM and Flow Matching by trigonometric interpolations

Diffusion process:
$$\boldsymbol{x}_t = \cos(t)\boldsymbol{x}_0 + \sin(t)\boldsymbol{z}$$
 for $t \in [0, \frac{\pi}{2}]$

PF-ODE:
$$\frac{\mathrm{d}\boldsymbol{x}_t}{\mathrm{d}t} = \sigma_d \boldsymbol{F}_{\theta} \left(\frac{\boldsymbol{x}_t}{\sigma_d}, c_{\mathrm{noise}}(t) \right)$$

Consistency model: $f_{\theta}(\boldsymbol{x}_t, t) = \cos(t)\boldsymbol{x}_t - \sin(t)\sigma_d \boldsymbol{F}_{\theta}\left(\frac{\boldsymbol{x}_t}{\sigma_d}, c_{\text{noise}}(t)\right)$

Boundary condition: $f(x,0) \equiv x$

Consistency model:
$$f_{\theta}(\boldsymbol{x}_t, t) = \cos(t)\boldsymbol{x}_t - \sin(t)\sigma_d \boldsymbol{F}_{\theta}\left(\frac{\boldsymbol{x}_t}{\sigma_d}, c_{\text{noise}}(t)\right)$$

Tangent:

$$\frac{\mathrm{d}\boldsymbol{f}_{\theta^{-}}(\boldsymbol{x}_{t},t)}{\mathrm{d}t} = -\cos(t)\left(\sigma_{d}\boldsymbol{F}_{\theta^{-}}\left(\frac{\boldsymbol{x}_{t}}{\sigma_{d}},t\right) - \frac{\mathrm{d}\boldsymbol{x}_{t}}{\mathrm{d}t}\right) - \sin(t)\left(\boldsymbol{x}_{t} + \sigma_{d}\frac{\mathrm{d}\boldsymbol{F}_{\theta^{-}}\left(\frac{\boldsymbol{x}_{t}}{\sigma_{d}},t\right)}{\mathrm{d}t}\right)$$
Stable Stable

Stable Stable Stable (Init from diffusion) (constant variance)

Stable (pretrained diffusion)

Consistency model:
$$f_{\theta}(\boldsymbol{x}_t, t) = \cos(t)\boldsymbol{x}_t - \sin(t)\sigma_d \boldsymbol{F}_{\theta}\left(\frac{\boldsymbol{x}_t}{\sigma_d}, c_{\text{noise}}(t)\right)$$

Tangent:

$$\frac{\mathrm{d}\boldsymbol{F}_{\theta^{-}}}{\mathrm{d}t} = \sin(t) \nabla_{\boldsymbol{x}_{t}} \boldsymbol{F}_{\theta^{-}} \frac{\mathrm{d}\boldsymbol{x}_{t}}{\mathrm{d}t} + \sin(t) \partial_{t} \boldsymbol{F}_{\theta^{-}}$$

Stable Stable (Jacobia(**pdstriaig@D**)(iffusion)

Consistency model: $f_{\theta}(\boldsymbol{x}_t, t) = \cos(t)\boldsymbol{x}_t - \sin(t)\sigma_d \boldsymbol{F}_{\theta}\left(\frac{\boldsymbol{x}_t}{\sigma_d}, c_{\text{noise}}(t)\right)$

Tangent:
$$\sin(t)\partial_t F_{\theta^-} = \sin(t)\frac{\partial c_{\text{noise}}(t)}{\partial t} \cdot \frac{\partial \text{emb}(c_{\text{noise}})}{\partial c_{\text{noise}}} \cdot \frac{\partial F_{\theta^-}}{\partial \text{emb}(c_{\text{noise}})}$$

Key: design network architecture that is well-conditioned w.r.t. t.

Consistency model: $f_{\theta}(\boldsymbol{x}_t, t) = \cos(t)\boldsymbol{x}_t - \sin(t)\sigma_d \boldsymbol{F}_{\theta}\left(\frac{\boldsymbol{x}_t}{\sigma_d}, c_{\text{noise}}(t)\right)$

Tangent:
$$\sin(t)\partial_t F_{\theta^-} = \sin(t) \frac{\partial c_{\text{noise}}(t)}{\partial t} \cdot \frac{\partial \text{emb}(c_{\text{noise}})}{\partial c_{\text{noise}}} \cdot \frac{\partial F_{\theta^-}}{\partial \text{emb}(c_{\text{noise}})}$$

- Previous methods: $c_{noise}(t) = \log(\tan(t))$
- Ours: $c_{noise}(t) = t$

Consistency model: $f_{\theta}(\boldsymbol{x}_t, t) = \cos(t)\boldsymbol{x}_t - \sin(t)\sigma_d \boldsymbol{F}_{\theta}\left(\frac{\boldsymbol{x}_t}{\sigma_d}, c_{\text{noise}}(t)\right)$

Tangent:
$$\sin(t)\partial_t F_{\theta^-} = \sin(t)\frac{\partial c_{\text{noise}}(t)}{\partial t} \cdot \frac{\partial \text{emb}(c_{\text{noise}})}{\partial c_{\text{noise}}} \cdot \frac{\partial F_{\theta^-}}{\partial \text{emb}(c_{\text{noise}})}$$

- Use small Fourier scales
- Reason: *cos*'(*fx*) = *f* * *sin*(*fx*)

Consistency model:
$$f_{\theta}(\boldsymbol{x}_t, t) = \cos(t)\boldsymbol{x}_t - \sin(t)\sigma_d \boldsymbol{F}_{\theta}\left(\frac{\boldsymbol{x}_t}{\sigma_d}, c_{\text{noise}}(t)\right)$$

Tangent:
$$\sin(t)\partial_t F_{\theta^-} = \sin(t)\frac{\partial c_{\text{noise}}(t)}{\partial t} \cdot \frac{\partial \text{emb}(c_{\text{noise}})}{\partial c_{\text{noise}}} \cdot \frac{\partial F_{\theta^-}}{\partial \text{emb}(c_{\text{noise}})}$$

• Modify AdaGN layer to add normalization in time.

Part 3: Reducing the variance across time steps

Adaptive weighting:

$$\min_{\phi} \mathbb{E}_t \left[rac{e^{w_{\phi}(t)}}{D} \| oldsymbol{F}_{ heta} - oldsymbol{F}_{ heta^-} + oldsymbol{y} \|_2^2 - w_{\phi}(t)
ight]$$

Optimal weighting will balance the variance across time steps:

$$rac{e^{oldsymbol{w}^*(t)}}{D}\mathbb{E}\left[\|oldsymbol{F}_{ heta}-oldsymbol{F}_{ heta^-}+oldsymbol{y}\|_2^2
ight]\equiv 1$$

No need for manually-designed weighting!

Part 4: Reducing the variance across data points

$rac{\mathrm{d} m{f}_{ heta^-}(m{x}_t,t)}{\mathrm{d} t}$ may have outliers at some dimensions of certain inputs

Intuition: mapping Gaussian to mixture-of-Gaussians will always have non-Lipschitzness at the boundary.

Solution: ignore the outliers, focus on the training at high density regions

→ Replace
$$\frac{df}{dt}$$
 with $\frac{df}{dt}/(\left\|\frac{df}{dt}\right\| + c)$, where *c* is a hyperparameter.
Effectiveness of variance reduction

Continuous-time CMs outperform discrete-time CMs

Comparable quality with 1/10 effective sampling compute

Selected 2-step samples on ImageNet 512x512

sCM scales commensurately with teacher diffusion models Same scaling property!

Quantitative Results on ImageNet 64x64

	Class-Conditional ImageNet 64×64						
	METHOD	NFE (\downarrow)	FID (\downarrow)				
	Diffusion Distillation						
	DFNO (LPIPS) (Zheng et al., 2023b)	1	7.83				
	PID (LPIPS) (Tee et al., 2024)	1	9.49				
	TRACT (Berthelot et al., 2023)	1	7.43				
		2	4.97				
	PD (Salimans & Ho, 2022)	1	10.70				
	(reimpl. from Heek et al. (2024))	2	4.70				
	CD (LPIPS) (Song et al., 2023)	1	6.20				
		2	4.70				
	MultiStep-CD (Heek et al., 2024)	1	3.20				
	Contraction and a state of the	2	1.90				
	sCD (ours)	1	2.44				
~		2	1.66				
	Consistency Training						
	iCT (Song & Dhariwal, 2023)	1	4.02				
		2	3.20				

		-	2.20
	iCT-deep (Song & Dhariwal, 2023)	1	3.25
		2	2.77
$ \Rightarrow$	ECT (Geng et al., 2024)	1	2.49
		2	1.67
$ \rightarrow $	sCT (ours)	1	2.04
		2	1.48

Quantitative Results on ImageNet 512x512

METHOD	NFE (4)	FID (\downarrow)	#Params	METHOD	NFE (\downarrow)	FID (\downarrow)	#Params	
Diffusion models				[†] Teacher Diffusion Model				
ADM-G (Dhariwal & Nichol, 2021)	250×2	7.72	559M	EDM2-S (Karras et al., 2024)	63×2	2.29	280M	
RIN (Jabri et al., 2022)	1000	3.95	320M	EDM2-M (Karras et al., 2024)	63×2	2.00	498M	
U-ViT-H/4 (Bao et al., 2023)	250×2	4.05	501M	EDM2-L (Karras et al., 2024)	63×2	1.87	778M	
DiT-XL/2 (Peebles & Xie, 2023)	250×2	3.04	675M	EDM2-XL (Karras et al., 2024)	63×2	1.80	1.1B	
SimDiff (Hoogeboom et al., 2023)	512×2	3.02	2B	EDM2-XXL (Karras et al., 2024)	63×2	1.73	1.5B	
VDM++ (Kingma & Gao, 2024)	512×2	2.65	2B			2.00%		
DiffiT (Hatamizadeh et al., 2023)	250×2	2.67	561M	Consistency Training (sCT, ours	Consistency Training (sCT, ours)			
DiMR-XL/3R (Liu et al., 2024)	250×2	2.89	525M	sCT-S (ours)	1	10.13	280M	
DIFFUSSM-XL (Yan et al., 2024)	250×2	3.41	673M		2	9.86	280M	
DiM-H (Teng et al., 2024)	250×2	3.78	860M	sCT-M (ours)	ĩ	5.84	498M	
U-DiT (Tian et al., 2024b)	250	15.39	204M	ser in (ours)	2	5.53	498M	
SiT-XL (Ma et al., 2024)	250×2	2.62	675M	sCT-L (ours)	1	5.15	778M	
Large-DiT (Alpha-VLLM, 2024)	250×2	2.52	3B	ser-L (ours)	2	1.65	7791	
MaskDiT (Zheng et al., 2023a)	79×2	2.50	736M	CT VI (ours)	4	4.05	110	
DiS-H/2 (Fei et al., 2024a)	250×2	2.88	900M	SCI-AL (OUTS)	1	4.55	1.1B	
DRWKV-H/2 (Fei et al., 2024b)	250×2	2.95	779M	OT MAN ()	4	5.15	1.18	
EDM2-S (Karras et al., 2024)	63×2	2.23	280M	sCI-XXL (ours)	1	4.29	1.5B	
EDM2-M (Karras et al., 2024)	63×2	2.01	498M		2	3.76	1.5B	
EDM2-L (Karras et al., 2024)	63×2	1.88	778M	Consistency Distillation (sCD, ours)				
EDM2-XL (Karras et al., 2024)	63×2	1.85	1.1B	CD C		2.07	00011	
EDM2-XXL (Karras et al., 2024)	63×2	1.81	1.5B	sCD-S	1	3.07	280M	
CANe & Masked Models				CD M	2	2.50	280M	
GAINS & Masked Models				sCD-M	1	2.75	498M	
BigGAN (Brock, 2018)	1	8.43	160M	14416	2	2.26	498M	
StyleGAN-XL (Sauer et al., 2022)	1×2	2.41	168M	sCD-L	1	2.55	778M	
VQGAN (Esser et al., 2021)	1024	26.52	227M		2	2.04	778M	
MaskGIT (Chang et al., 2022)	12	7.32	227M	sCD-XL	1	2.40	1.1B	
MAGVIT-v2 (Yu et al., 2023)	64×2	1.91	307M		2	1.93	1.1B	
MAR (Li et al., 2024)	64×2	1.73	481M	sCD-XXL	1	2.28	1.5B	
VAR-d36-s (Tian et al., 2024a)	10×2	2.63	2.3B		2	1.88	1.5B	

- Continuous-time CMs avoid the discretization error of PF-ODEs, producing better samples than discrete-time CMs.
- Always keep training stability in mind when designing scalable algorithms.
- Continuous-time CMs reduce the performance gap to SOTA diffusion models to within 10%, while achieving approximately a 50x speedup in sampling.